Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes
In this paper, a new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2009-07, Vol.229 (1), p.230-239 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 1 |
container_start_page | 230 |
container_title | Journal of computational and applied mathematics |
container_volume | 229 |
creator | Hu, Lanying Ren, Yong |
description | In this paper, a new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to a class of stochastic partial differential integral equations (PDIEs in short) with a nonlinear Neumann boundary condition is given. |
doi_str_mv | 10.1016/j.cam.2008.10.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903650083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042708005608</els_id><sourcerecordid>34475265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c99f959102fa1a22f3224089adbbf75b8a4bf7f236c1e2f4e25692b151a9bd423</originalsourceid><addsrcrecordid>eNp9kU1uFDEQRi1EJIaEA7DzBlj1YLvdPxYrlAQSaZQgAWur2i4TDz12YndPNFyEM3AOLhaPJoJdViVbr15J30fIa86WnPH2_XppYLMUjPXlvWSie0YWvO9Uxbuuf04WrO66iknRvSAvc14zxlrF5YL8_jpFcwN58oZ-Obs8z_TeTzc0xDD6gJDoFc4bCIEOcQ4W0o6aGKyffAyZQrD0BwZMMPpfaOkA5uc9JEttnIdxR_N_t_XOYcIweRgp3s1wMNjkt1jkO7r6-2e7o7cpGswZ8wk5cjBmfPU4j8n3T-ffTi-q1fXny9OPq8rIup4qo5RTjeJMOOAghKuFkKxXYIfBdc3QgyzTibo1HIWTKJpWiYE3HNRgpaiPybuDt1y-mzFPeuOzwXGEgHHOWrG6bUqqdSHfPknWUnaNaJsC8gNoUsw5odO3yW9KdJozvS9Lr3UpS-_L2n-VssrOm0c5ZAOjSxCMz_8WBW-k7Nme-3DgsGSy9Zh0Nh6DQesTmknb6J-48gA0qq4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34475265</pqid></control><display><type>article</type><title>Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hu, Lanying ; Ren, Yong</creator><creatorcontrib>Hu, Lanying ; Ren, Yong</creatorcontrib><description>In this paper, a new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to a class of stochastic partial differential integral equations (PDIEs in short) with a nonlinear Neumann boundary condition is given.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2008.10.027</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Backward doubly stochastic differential equation ; Exact sciences and technology ; Lévy process ; Mathematical analysis ; Mathematics ; Neumann boundary condition ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Ordinary differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use ; Stochastic partial differential integral equation ; Teugels martingale</subject><ispartof>Journal of computational and applied mathematics, 2009-07, Vol.229 (1), p.230-239</ispartof><rights>2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c99f959102fa1a22f3224089adbbf75b8a4bf7f236c1e2f4e25692b151a9bd423</citedby><cites>FETCH-LOGICAL-c433t-c99f959102fa1a22f3224089adbbf75b8a4bf7f236c1e2f4e25692b151a9bd423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042708005608$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21544807$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Lanying</creatorcontrib><creatorcontrib>Ren, Yong</creatorcontrib><title>Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes</title><title>Journal of computational and applied mathematics</title><description>In this paper, a new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to a class of stochastic partial differential integral equations (PDIEs in short) with a nonlinear Neumann boundary condition is given.</description><subject>Backward doubly stochastic differential equation</subject><subject>Exact sciences and technology</subject><subject>Lévy process</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Neumann boundary condition</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic partial differential integral equation</subject><subject>Teugels martingale</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU1uFDEQRi1EJIaEA7DzBlj1YLvdPxYrlAQSaZQgAWur2i4TDz12YndPNFyEM3AOLhaPJoJdViVbr15J30fIa86WnPH2_XppYLMUjPXlvWSie0YWvO9Uxbuuf04WrO66iknRvSAvc14zxlrF5YL8_jpFcwN58oZ-Obs8z_TeTzc0xDD6gJDoFc4bCIEOcQ4W0o6aGKyffAyZQrD0BwZMMPpfaOkA5uc9JEttnIdxR_N_t_XOYcIweRgp3s1wMNjkt1jkO7r6-2e7o7cpGswZ8wk5cjBmfPU4j8n3T-ffTi-q1fXny9OPq8rIup4qo5RTjeJMOOAghKuFkKxXYIfBdc3QgyzTibo1HIWTKJpWiYE3HNRgpaiPybuDt1y-mzFPeuOzwXGEgHHOWrG6bUqqdSHfPknWUnaNaJsC8gNoUsw5odO3yW9KdJozvS9Lr3UpS-_L2n-VssrOm0c5ZAOjSxCMz_8WBW-k7Nme-3DgsGSy9Zh0Nh6DQesTmknb6J-48gA0qq4E</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Hu, Lanying</creator><creator>Ren, Yong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes</title><author>Hu, Lanying ; Ren, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c99f959102fa1a22f3224089adbbf75b8a4bf7f236c1e2f4e25692b151a9bd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Backward doubly stochastic differential equation</topic><topic>Exact sciences and technology</topic><topic>Lévy process</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Neumann boundary condition</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic partial differential integral equation</topic><topic>Teugels martingale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lanying</creatorcontrib><creatorcontrib>Ren, Yong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Lanying</au><au>Ren, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>229</volume><issue>1</issue><spage>230</spage><epage>239</epage><pages>230-239</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, a new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to a class of stochastic partial differential integral equations (PDIEs in short) with a nonlinear Neumann boundary condition is given.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2008.10.027</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2009-07, Vol.229 (1), p.230-239 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_903650083 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Backward doubly stochastic differential equation Exact sciences and technology Lévy process Mathematical analysis Mathematics Neumann boundary condition Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Ordinary differential equations Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use Stochastic partial differential integral equation Teugels martingale |
title | Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20PDIEs%20with%20nonlinear%20Neumann%20boundary%20conditions%20and%20generalized%20backward%20doubly%20stochastic%20differential%20equations%20driven%20by%20L%C3%A9vy%20processes&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Hu,%20Lanying&rft.date=2009-07-01&rft.volume=229&rft.issue=1&rft.spage=230&rft.epage=239&rft.pages=230-239&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2008.10.027&rft_dat=%3Cproquest_cross%3E34475265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34475265&rft_id=info:pmid/&rft_els_id=S0377042708005608&rfr_iscdi=true |