Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes

In this paper, a new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2009-07, Vol.229 (1), p.230-239
Hauptverfasser: Hu, Lanying, Ren, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 1
container_start_page 230
container_title Journal of computational and applied mathematics
container_volume 229
creator Hu, Lanying
Ren, Yong
description In this paper, a new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to a class of stochastic partial differential integral equations (PDIEs in short) with a nonlinear Neumann boundary condition is given.
doi_str_mv 10.1016/j.cam.2008.10.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903650083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042708005608</els_id><sourcerecordid>34475265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c99f959102fa1a22f3224089adbbf75b8a4bf7f236c1e2f4e25692b151a9bd423</originalsourceid><addsrcrecordid>eNp9kU1uFDEQRi1EJIaEA7DzBlj1YLvdPxYrlAQSaZQgAWur2i4TDz12YndPNFyEM3AOLhaPJoJdViVbr15J30fIa86WnPH2_XppYLMUjPXlvWSie0YWvO9Uxbuuf04WrO66iknRvSAvc14zxlrF5YL8_jpFcwN58oZ-Obs8z_TeTzc0xDD6gJDoFc4bCIEOcQ4W0o6aGKyffAyZQrD0BwZMMPpfaOkA5uc9JEttnIdxR_N_t_XOYcIweRgp3s1wMNjkt1jkO7r6-2e7o7cpGswZ8wk5cjBmfPU4j8n3T-ffTi-q1fXny9OPq8rIup4qo5RTjeJMOOAghKuFkKxXYIfBdc3QgyzTibo1HIWTKJpWiYE3HNRgpaiPybuDt1y-mzFPeuOzwXGEgHHOWrG6bUqqdSHfPknWUnaNaJsC8gNoUsw5odO3yW9KdJozvS9Lr3UpS-_L2n-VssrOm0c5ZAOjSxCMz_8WBW-k7Nme-3DgsGSy9Zh0Nh6DQesTmknb6J-48gA0qq4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34475265</pqid></control><display><type>article</type><title>Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hu, Lanying ; Ren, Yong</creator><creatorcontrib>Hu, Lanying ; Ren, Yong</creatorcontrib><description>In this paper, a new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to a class of stochastic partial differential integral equations (PDIEs in short) with a nonlinear Neumann boundary condition is given.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2008.10.027</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Backward doubly stochastic differential equation ; Exact sciences and technology ; Lévy process ; Mathematical analysis ; Mathematics ; Neumann boundary condition ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Ordinary differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use ; Stochastic partial differential integral equation ; Teugels martingale</subject><ispartof>Journal of computational and applied mathematics, 2009-07, Vol.229 (1), p.230-239</ispartof><rights>2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c99f959102fa1a22f3224089adbbf75b8a4bf7f236c1e2f4e25692b151a9bd423</citedby><cites>FETCH-LOGICAL-c433t-c99f959102fa1a22f3224089adbbf75b8a4bf7f236c1e2f4e25692b151a9bd423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042708005608$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21544807$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Lanying</creatorcontrib><creatorcontrib>Ren, Yong</creatorcontrib><title>Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes</title><title>Journal of computational and applied mathematics</title><description>In this paper, a new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to a class of stochastic partial differential integral equations (PDIEs in short) with a nonlinear Neumann boundary condition is given.</description><subject>Backward doubly stochastic differential equation</subject><subject>Exact sciences and technology</subject><subject>Lévy process</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Neumann boundary condition</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic partial differential integral equation</subject><subject>Teugels martingale</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU1uFDEQRi1EJIaEA7DzBlj1YLvdPxYrlAQSaZQgAWur2i4TDz12YndPNFyEM3AOLhaPJoJdViVbr15J30fIa86WnPH2_XppYLMUjPXlvWSie0YWvO9Uxbuuf04WrO66iknRvSAvc14zxlrF5YL8_jpFcwN58oZ-Obs8z_TeTzc0xDD6gJDoFc4bCIEOcQ4W0o6aGKyffAyZQrD0BwZMMPpfaOkA5uc9JEttnIdxR_N_t_XOYcIweRgp3s1wMNjkt1jkO7r6-2e7o7cpGswZ8wk5cjBmfPU4j8n3T-ffTi-q1fXny9OPq8rIup4qo5RTjeJMOOAghKuFkKxXYIfBdc3QgyzTibo1HIWTKJpWiYE3HNRgpaiPybuDt1y-mzFPeuOzwXGEgHHOWrG6bUqqdSHfPknWUnaNaJsC8gNoUsw5odO3yW9KdJozvS9Lr3UpS-_L2n-VssrOm0c5ZAOjSxCMz_8WBW-k7Nme-3DgsGSy9Zh0Nh6DQesTmknb6J-48gA0qq4E</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Hu, Lanying</creator><creator>Ren, Yong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes</title><author>Hu, Lanying ; Ren, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c99f959102fa1a22f3224089adbbf75b8a4bf7f236c1e2f4e25692b151a9bd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Backward doubly stochastic differential equation</topic><topic>Exact sciences and technology</topic><topic>Lévy process</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Neumann boundary condition</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic partial differential integral equation</topic><topic>Teugels martingale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lanying</creatorcontrib><creatorcontrib>Ren, Yong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Lanying</au><au>Ren, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>229</volume><issue>1</issue><spage>230</spage><epage>239</epage><pages>230-239</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, a new class of generalized backward doubly stochastic differential equations (GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to a class of stochastic partial differential integral equations (PDIEs in short) with a nonlinear Neumann boundary condition is given.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2008.10.027</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2009-07, Vol.229 (1), p.230-239
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_903650083
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Backward doubly stochastic differential equation
Exact sciences and technology
Lévy process
Mathematical analysis
Mathematics
Neumann boundary condition
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Ordinary differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
Stochastic partial differential integral equation
Teugels martingale
title Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20PDIEs%20with%20nonlinear%20Neumann%20boundary%20conditions%20and%20generalized%20backward%20doubly%20stochastic%20differential%20equations%20driven%20by%20L%C3%A9vy%20processes&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Hu,%20Lanying&rft.date=2009-07-01&rft.volume=229&rft.issue=1&rft.spage=230&rft.epage=239&rft.pages=230-239&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2008.10.027&rft_dat=%3Cproquest_cross%3E34475265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34475265&rft_id=info:pmid/&rft_els_id=S0377042708005608&rfr_iscdi=true