Rigorous Extraction of Process Variations for 65-nm CMOS Design
Statistical circuit analysis and optimization are critical for robust nanoscale CMOS design. To accurately perform such analysis, primary process variation sources need to be identified and modeled for further circuit simulation. In this work, a rigorous method to extract process variations from in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on semiconductor manufacturing 2009-02, Vol.22 (1), p.196-203 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 1 |
container_start_page | 196 |
container_title | IEEE transactions on semiconductor manufacturing |
container_volume | 22 |
creator | Wei Zhao Liu, F. Agarwal, K. Acharyya, D. Nassif, S.R. Nowka, K.J. Yu Cao |
description | Statistical circuit analysis and optimization are critical for robust nanoscale CMOS design. To accurately perform such analysis, primary process variation sources need to be identified and modeled for further circuit simulation. In this work, a rigorous method to extract process variations from in situ IV measurements is present. Transistor statistics are collected from a test chip fabricated in a 65-nm process. Gate length (L ), threshold voltage (V th ) and mobility (¿) are recognized as the leading variation sources, due to the tremendous process challenges in lithography, channel doping, and the stress engineering. To decompose these variations, three critical IV points from the cut-off and linear regions are identified. The extracted L , V th and ¿ variations are normally distributed, with negligible spatial correlation. By including extracted variations in the nominal model file, accurate prediction of the change of drive current in all operation regions and process corners is achieved. The new extraction method guarantees excellent model matching with hardware for further statistical circuit analysis. |
doi_str_mv | 10.1109/TSM.2008.2011182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903647333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4773506</ieee_id><sourcerecordid>903647333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1b4caec7a71b99369dd0e9169fc70f36249931ebc489b8c071780fbf0e229ec63</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxUVooK6beyGXJdDmtMmMvnUKwXXago1Dvq5Cq0hmjb1KJBva_7672OSQQ6uDBKPfvDfDI-QLwgUimMuH-_kFBdD9hYiaHpERCqFryrj4QEagDa-lAPWRfCplBYCcGzUiV3ftMuW0K9X09zY7v21TV6VY3ebkQynVk8utG4qliilXUtTdpprMF_fV91DaZfeZHEe3LuHk8I7J4830YfKzni1-_Jpcz2rPUWxrbLh3wSunsDGGSfP8DMGgNNEriExS3lcxNJ5r02gPCpWG2EQIlJrgJRuT873uS06vu1C2dtMWH9Zr14V-emuASa5Yf_5HaiUADdOD5rd_koxzVMzwHjx7B67SLnf9vtYgBaoMHXxhD_mcSskh2pfcblz-YxHsEJHtI7JDRPYQUd_y9aDrinfrmF3n2_LWR5ErKsXgf7rn2hDC2zdXigmQ7C-5u5aG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912027923</pqid></control><display><type>article</type><title>Rigorous Extraction of Process Variations for 65-nm CMOS Design</title><source>IEEE Electronic Library (IEL)</source><creator>Wei Zhao ; Liu, F. ; Agarwal, K. ; Acharyya, D. ; Nassif, S.R. ; Nowka, K.J. ; Yu Cao</creator><creatorcontrib>Wei Zhao ; Liu, F. ; Agarwal, K. ; Acharyya, D. ; Nassif, S.R. ; Nowka, K.J. ; Yu Cao</creatorcontrib><description>Statistical circuit analysis and optimization are critical for robust nanoscale CMOS design. To accurately perform such analysis, primary process variation sources need to be identified and modeled for further circuit simulation. In this work, a rigorous method to extract process variations from in situ IV measurements is present. Transistor statistics are collected from a test chip fabricated in a 65-nm process. Gate length (L ), threshold voltage (V th ) and mobility (¿) are recognized as the leading variation sources, due to the tremendous process challenges in lithography, channel doping, and the stress engineering. To decompose these variations, three critical IV points from the cut-off and linear regions are identified. The extracted L , V th and ¿ variations are normally distributed, with negligible spatial correlation. By including extracted variations in the nominal model file, accurate prediction of the change of drive current in all operation regions and process corners is achieved. The new extraction method guarantees excellent model matching with hardware for further statistical circuit analysis.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2008.2011182</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channels ; Circuit analysis ; Circuit simulation ; Circuit testing ; Circuits ; CMOS ; CMOS process ; Compact modeling ; Design engineering ; Design optimization ; Design. Technologies. Operation analysis. Testing ; Electric, optical and optoelectronic circuits ; Electronics ; Electronics industry ; Exact sciences and technology ; Extraction ; Integrated circuits ; Mathematical models ; Microelectronic fabrication (materials and surfaces technology) ; Nanostructure ; Performance analysis ; process variation ; Robustness ; Semiconductor device measurement ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; spatial correlation ; Statistical analysis ; Theoretical study. Circuits analysis and design ; threshold voltage variation ; Transistors</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2009-02, Vol.22 (1), p.196-203</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1b4caec7a71b99369dd0e9169fc70f36249931ebc489b8c071780fbf0e229ec63</citedby><cites>FETCH-LOGICAL-c415t-1b4caec7a71b99369dd0e9169fc70f36249931ebc489b8c071780fbf0e229ec63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4773506$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4773506$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21472654$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei Zhao</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Agarwal, K.</creatorcontrib><creatorcontrib>Acharyya, D.</creatorcontrib><creatorcontrib>Nassif, S.R.</creatorcontrib><creatorcontrib>Nowka, K.J.</creatorcontrib><creatorcontrib>Yu Cao</creatorcontrib><title>Rigorous Extraction of Process Variations for 65-nm CMOS Design</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>Statistical circuit analysis and optimization are critical for robust nanoscale CMOS design. To accurately perform such analysis, primary process variation sources need to be identified and modeled for further circuit simulation. In this work, a rigorous method to extract process variations from in situ IV measurements is present. Transistor statistics are collected from a test chip fabricated in a 65-nm process. Gate length (L ), threshold voltage (V th ) and mobility (¿) are recognized as the leading variation sources, due to the tremendous process challenges in lithography, channel doping, and the stress engineering. To decompose these variations, three critical IV points from the cut-off and linear regions are identified. The extracted L , V th and ¿ variations are normally distributed, with negligible spatial correlation. By including extracted variations in the nominal model file, accurate prediction of the change of drive current in all operation regions and process corners is achieved. The new extraction method guarantees excellent model matching with hardware for further statistical circuit analysis.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Circuit analysis</subject><subject>Circuit simulation</subject><subject>Circuit testing</subject><subject>Circuits</subject><subject>CMOS</subject><subject>CMOS process</subject><subject>Compact modeling</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Electronics industry</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanostructure</subject><subject>Performance analysis</subject><subject>process variation</subject><subject>Robustness</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>spatial correlation</subject><subject>Statistical analysis</subject><subject>Theoretical study. Circuits analysis and design</subject><subject>threshold voltage variation</subject><subject>Transistors</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1rGzEQxUVooK6beyGXJdDmtMmMvnUKwXXago1Dvq5Cq0hmjb1KJBva_7672OSQQ6uDBKPfvDfDI-QLwgUimMuH-_kFBdD9hYiaHpERCqFryrj4QEagDa-lAPWRfCplBYCcGzUiV3ftMuW0K9X09zY7v21TV6VY3ebkQynVk8utG4qliilXUtTdpprMF_fV91DaZfeZHEe3LuHk8I7J4830YfKzni1-_Jpcz2rPUWxrbLh3wSunsDGGSfP8DMGgNNEriExS3lcxNJ5r02gPCpWG2EQIlJrgJRuT873uS06vu1C2dtMWH9Zr14V-emuASa5Yf_5HaiUADdOD5rd_koxzVMzwHjx7B67SLnf9vtYgBaoMHXxhD_mcSskh2pfcblz-YxHsEJHtI7JDRPYQUd_y9aDrinfrmF3n2_LWR5ErKsXgf7rn2hDC2zdXigmQ7C-5u5aG</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Wei Zhao</creator><creator>Liu, F.</creator><creator>Agarwal, K.</creator><creator>Acharyya, D.</creator><creator>Nassif, S.R.</creator><creator>Nowka, K.J.</creator><creator>Yu Cao</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Rigorous Extraction of Process Variations for 65-nm CMOS Design</title><author>Wei Zhao ; Liu, F. ; Agarwal, K. ; Acharyya, D. ; Nassif, S.R. ; Nowka, K.J. ; Yu Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1b4caec7a71b99369dd0e9169fc70f36249931ebc489b8c071780fbf0e229ec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Circuit analysis</topic><topic>Circuit simulation</topic><topic>Circuit testing</topic><topic>Circuits</topic><topic>CMOS</topic><topic>CMOS process</topic><topic>Compact modeling</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Electronics industry</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanostructure</topic><topic>Performance analysis</topic><topic>process variation</topic><topic>Robustness</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>spatial correlation</topic><topic>Statistical analysis</topic><topic>Theoretical study. Circuits analysis and design</topic><topic>threshold voltage variation</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei Zhao</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Agarwal, K.</creatorcontrib><creatorcontrib>Acharyya, D.</creatorcontrib><creatorcontrib>Nassif, S.R.</creatorcontrib><creatorcontrib>Nowka, K.J.</creatorcontrib><creatorcontrib>Yu Cao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Zhao</au><au>Liu, F.</au><au>Agarwal, K.</au><au>Acharyya, D.</au><au>Nassif, S.R.</au><au>Nowka, K.J.</au><au>Yu Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous Extraction of Process Variations for 65-nm CMOS Design</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>22</volume><issue>1</issue><spage>196</spage><epage>203</epage><pages>196-203</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>Statistical circuit analysis and optimization are critical for robust nanoscale CMOS design. To accurately perform such analysis, primary process variation sources need to be identified and modeled for further circuit simulation. In this work, a rigorous method to extract process variations from in situ IV measurements is present. Transistor statistics are collected from a test chip fabricated in a 65-nm process. Gate length (L ), threshold voltage (V th ) and mobility (¿) are recognized as the leading variation sources, due to the tremendous process challenges in lithography, channel doping, and the stress engineering. To decompose these variations, three critical IV points from the cut-off and linear regions are identified. The extracted L , V th and ¿ variations are normally distributed, with negligible spatial correlation. By including extracted variations in the nominal model file, accurate prediction of the change of drive current in all operation regions and process corners is achieved. The new extraction method guarantees excellent model matching with hardware for further statistical circuit analysis.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSM.2008.2011182</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0894-6507 |
ispartof | IEEE transactions on semiconductor manufacturing, 2009-02, Vol.22 (1), p.196-203 |
issn | 0894-6507 1558-2345 |
language | eng |
recordid | cdi_proquest_miscellaneous_903647333 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Channels Circuit analysis Circuit simulation Circuit testing Circuits CMOS CMOS process Compact modeling Design engineering Design optimization Design. Technologies. Operation analysis. Testing Electric, optical and optoelectronic circuits Electronics Electronics industry Exact sciences and technology Extraction Integrated circuits Mathematical models Microelectronic fabrication (materials and surfaces technology) Nanostructure Performance analysis process variation Robustness Semiconductor device measurement Semiconductor device modeling Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors spatial correlation Statistical analysis Theoretical study. Circuits analysis and design threshold voltage variation Transistors |
title | Rigorous Extraction of Process Variations for 65-nm CMOS Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20Extraction%20of%20Process%20Variations%20for%2065-nm%20CMOS%20Design&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Wei%20Zhao&rft.date=2009-02-01&rft.volume=22&rft.issue=1&rft.spage=196&rft.epage=203&rft.pages=196-203&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2008.2011182&rft_dat=%3Cproquest_RIE%3E903647333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912027923&rft_id=info:pmid/&rft_ieee_id=4773506&rfr_iscdi=true |