Rigorous Extraction of Process Variations for 65-nm CMOS Design

Statistical circuit analysis and optimization are critical for robust nanoscale CMOS design. To accurately perform such analysis, primary process variation sources need to be identified and modeled for further circuit simulation. In this work, a rigorous method to extract process variations from in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 2009-02, Vol.22 (1), p.196-203
Hauptverfasser: Wei Zhao, Liu, F., Agarwal, K., Acharyya, D., Nassif, S.R., Nowka, K.J., Yu Cao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 1
container_start_page 196
container_title IEEE transactions on semiconductor manufacturing
container_volume 22
creator Wei Zhao
Liu, F.
Agarwal, K.
Acharyya, D.
Nassif, S.R.
Nowka, K.J.
Yu Cao
description Statistical circuit analysis and optimization are critical for robust nanoscale CMOS design. To accurately perform such analysis, primary process variation sources need to be identified and modeled for further circuit simulation. In this work, a rigorous method to extract process variations from in situ IV measurements is present. Transistor statistics are collected from a test chip fabricated in a 65-nm process. Gate length (L ), threshold voltage (V th ) and mobility (¿) are recognized as the leading variation sources, due to the tremendous process challenges in lithography, channel doping, and the stress engineering. To decompose these variations, three critical IV points from the cut-off and linear regions are identified. The extracted L , V th and ¿ variations are normally distributed, with negligible spatial correlation. By including extracted variations in the nominal model file, accurate prediction of the change of drive current in all operation regions and process corners is achieved. The new extraction method guarantees excellent model matching with hardware for further statistical circuit analysis.
doi_str_mv 10.1109/TSM.2008.2011182
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903647333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4773506</ieee_id><sourcerecordid>903647333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1b4caec7a71b99369dd0e9169fc70f36249931ebc489b8c071780fbf0e229ec63</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxUVooK6beyGXJdDmtMmMvnUKwXXago1Dvq5Cq0hmjb1KJBva_7672OSQQ6uDBKPfvDfDI-QLwgUimMuH-_kFBdD9hYiaHpERCqFryrj4QEagDa-lAPWRfCplBYCcGzUiV3ftMuW0K9X09zY7v21TV6VY3ebkQynVk8utG4qliilXUtTdpprMF_fV91DaZfeZHEe3LuHk8I7J4830YfKzni1-_Jpcz2rPUWxrbLh3wSunsDGGSfP8DMGgNNEriExS3lcxNJ5r02gPCpWG2EQIlJrgJRuT873uS06vu1C2dtMWH9Zr14V-emuASa5Yf_5HaiUADdOD5rd_koxzVMzwHjx7B67SLnf9vtYgBaoMHXxhD_mcSskh2pfcblz-YxHsEJHtI7JDRPYQUd_y9aDrinfrmF3n2_LWR5ErKsXgf7rn2hDC2zdXigmQ7C-5u5aG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912027923</pqid></control><display><type>article</type><title>Rigorous Extraction of Process Variations for 65-nm CMOS Design</title><source>IEEE Electronic Library (IEL)</source><creator>Wei Zhao ; Liu, F. ; Agarwal, K. ; Acharyya, D. ; Nassif, S.R. ; Nowka, K.J. ; Yu Cao</creator><creatorcontrib>Wei Zhao ; Liu, F. ; Agarwal, K. ; Acharyya, D. ; Nassif, S.R. ; Nowka, K.J. ; Yu Cao</creatorcontrib><description>Statistical circuit analysis and optimization are critical for robust nanoscale CMOS design. To accurately perform such analysis, primary process variation sources need to be identified and modeled for further circuit simulation. In this work, a rigorous method to extract process variations from in situ IV measurements is present. Transistor statistics are collected from a test chip fabricated in a 65-nm process. Gate length (L ), threshold voltage (V th ) and mobility (¿) are recognized as the leading variation sources, due to the tremendous process challenges in lithography, channel doping, and the stress engineering. To decompose these variations, three critical IV points from the cut-off and linear regions are identified. The extracted L , V th and ¿ variations are normally distributed, with negligible spatial correlation. By including extracted variations in the nominal model file, accurate prediction of the change of drive current in all operation regions and process corners is achieved. The new extraction method guarantees excellent model matching with hardware for further statistical circuit analysis.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2008.2011182</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channels ; Circuit analysis ; Circuit simulation ; Circuit testing ; Circuits ; CMOS ; CMOS process ; Compact modeling ; Design engineering ; Design optimization ; Design. Technologies. Operation analysis. Testing ; Electric, optical and optoelectronic circuits ; Electronics ; Electronics industry ; Exact sciences and technology ; Extraction ; Integrated circuits ; Mathematical models ; Microelectronic fabrication (materials and surfaces technology) ; Nanostructure ; Performance analysis ; process variation ; Robustness ; Semiconductor device measurement ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; spatial correlation ; Statistical analysis ; Theoretical study. Circuits analysis and design ; threshold voltage variation ; Transistors</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2009-02, Vol.22 (1), p.196-203</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1b4caec7a71b99369dd0e9169fc70f36249931ebc489b8c071780fbf0e229ec63</citedby><cites>FETCH-LOGICAL-c415t-1b4caec7a71b99369dd0e9169fc70f36249931ebc489b8c071780fbf0e229ec63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4773506$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4773506$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21472654$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei Zhao</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Agarwal, K.</creatorcontrib><creatorcontrib>Acharyya, D.</creatorcontrib><creatorcontrib>Nassif, S.R.</creatorcontrib><creatorcontrib>Nowka, K.J.</creatorcontrib><creatorcontrib>Yu Cao</creatorcontrib><title>Rigorous Extraction of Process Variations for 65-nm CMOS Design</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>Statistical circuit analysis and optimization are critical for robust nanoscale CMOS design. To accurately perform such analysis, primary process variation sources need to be identified and modeled for further circuit simulation. In this work, a rigorous method to extract process variations from in situ IV measurements is present. Transistor statistics are collected from a test chip fabricated in a 65-nm process. Gate length (L ), threshold voltage (V th ) and mobility (¿) are recognized as the leading variation sources, due to the tremendous process challenges in lithography, channel doping, and the stress engineering. To decompose these variations, three critical IV points from the cut-off and linear regions are identified. The extracted L , V th and ¿ variations are normally distributed, with negligible spatial correlation. By including extracted variations in the nominal model file, accurate prediction of the change of drive current in all operation regions and process corners is achieved. The new extraction method guarantees excellent model matching with hardware for further statistical circuit analysis.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Circuit analysis</subject><subject>Circuit simulation</subject><subject>Circuit testing</subject><subject>Circuits</subject><subject>CMOS</subject><subject>CMOS process</subject><subject>Compact modeling</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Electronics industry</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanostructure</subject><subject>Performance analysis</subject><subject>process variation</subject><subject>Robustness</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>spatial correlation</subject><subject>Statistical analysis</subject><subject>Theoretical study. Circuits analysis and design</subject><subject>threshold voltage variation</subject><subject>Transistors</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1rGzEQxUVooK6beyGXJdDmtMmMvnUKwXXago1Dvq5Cq0hmjb1KJBva_7672OSQQ6uDBKPfvDfDI-QLwgUimMuH-_kFBdD9hYiaHpERCqFryrj4QEagDa-lAPWRfCplBYCcGzUiV3ftMuW0K9X09zY7v21TV6VY3ebkQynVk8utG4qliilXUtTdpprMF_fV91DaZfeZHEe3LuHk8I7J4830YfKzni1-_Jpcz2rPUWxrbLh3wSunsDGGSfP8DMGgNNEriExS3lcxNJ5r02gPCpWG2EQIlJrgJRuT873uS06vu1C2dtMWH9Zr14V-emuASa5Yf_5HaiUADdOD5rd_koxzVMzwHjx7B67SLnf9vtYgBaoMHXxhD_mcSskh2pfcblz-YxHsEJHtI7JDRPYQUd_y9aDrinfrmF3n2_LWR5ErKsXgf7rn2hDC2zdXigmQ7C-5u5aG</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Wei Zhao</creator><creator>Liu, F.</creator><creator>Agarwal, K.</creator><creator>Acharyya, D.</creator><creator>Nassif, S.R.</creator><creator>Nowka, K.J.</creator><creator>Yu Cao</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Rigorous Extraction of Process Variations for 65-nm CMOS Design</title><author>Wei Zhao ; Liu, F. ; Agarwal, K. ; Acharyya, D. ; Nassif, S.R. ; Nowka, K.J. ; Yu Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1b4caec7a71b99369dd0e9169fc70f36249931ebc489b8c071780fbf0e229ec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Circuit analysis</topic><topic>Circuit simulation</topic><topic>Circuit testing</topic><topic>Circuits</topic><topic>CMOS</topic><topic>CMOS process</topic><topic>Compact modeling</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Electronics industry</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanostructure</topic><topic>Performance analysis</topic><topic>process variation</topic><topic>Robustness</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>spatial correlation</topic><topic>Statistical analysis</topic><topic>Theoretical study. Circuits analysis and design</topic><topic>threshold voltage variation</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei Zhao</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Agarwal, K.</creatorcontrib><creatorcontrib>Acharyya, D.</creatorcontrib><creatorcontrib>Nassif, S.R.</creatorcontrib><creatorcontrib>Nowka, K.J.</creatorcontrib><creatorcontrib>Yu Cao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Zhao</au><au>Liu, F.</au><au>Agarwal, K.</au><au>Acharyya, D.</au><au>Nassif, S.R.</au><au>Nowka, K.J.</au><au>Yu Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous Extraction of Process Variations for 65-nm CMOS Design</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>22</volume><issue>1</issue><spage>196</spage><epage>203</epage><pages>196-203</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>Statistical circuit analysis and optimization are critical for robust nanoscale CMOS design. To accurately perform such analysis, primary process variation sources need to be identified and modeled for further circuit simulation. In this work, a rigorous method to extract process variations from in situ IV measurements is present. Transistor statistics are collected from a test chip fabricated in a 65-nm process. Gate length (L ), threshold voltage (V th ) and mobility (¿) are recognized as the leading variation sources, due to the tremendous process challenges in lithography, channel doping, and the stress engineering. To decompose these variations, three critical IV points from the cut-off and linear regions are identified. The extracted L , V th and ¿ variations are normally distributed, with negligible spatial correlation. By including extracted variations in the nominal model file, accurate prediction of the change of drive current in all operation regions and process corners is achieved. The new extraction method guarantees excellent model matching with hardware for further statistical circuit analysis.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSM.2008.2011182</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 2009-02, Vol.22 (1), p.196-203
issn 0894-6507
1558-2345
language eng
recordid cdi_proquest_miscellaneous_903647333
source IEEE Electronic Library (IEL)
subjects Applied sciences
Channels
Circuit analysis
Circuit simulation
Circuit testing
Circuits
CMOS
CMOS process
Compact modeling
Design engineering
Design optimization
Design. Technologies. Operation analysis. Testing
Electric, optical and optoelectronic circuits
Electronics
Electronics industry
Exact sciences and technology
Extraction
Integrated circuits
Mathematical models
Microelectronic fabrication (materials and surfaces technology)
Nanostructure
Performance analysis
process variation
Robustness
Semiconductor device measurement
Semiconductor device modeling
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
spatial correlation
Statistical analysis
Theoretical study. Circuits analysis and design
threshold voltage variation
Transistors
title Rigorous Extraction of Process Variations for 65-nm CMOS Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20Extraction%20of%20Process%20Variations%20for%2065-nm%20CMOS%20Design&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Wei%20Zhao&rft.date=2009-02-01&rft.volume=22&rft.issue=1&rft.spage=196&rft.epage=203&rft.pages=196-203&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2008.2011182&rft_dat=%3Cproquest_RIE%3E903647333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912027923&rft_id=info:pmid/&rft_ieee_id=4773506&rfr_iscdi=true