Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea
The sensitivity hypothesis seeks to explain the correlation between the wavelength of visual pigment absorption maxima ( λ max) and habitat type in fish and other marine animals in terms of the maximisation of photoreceptor photon catch. In recent years its legitimacy has been called into question a...
Gespeichert in:
Veröffentlicht in: | Deep-sea research. Part I, Oceanographic research papers Oceanographic research papers, 2009-06, Vol.56 (6), p.1003-1017 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | 6 |
container_start_page | 1003 |
container_title | Deep-sea research. Part I, Oceanographic research papers |
container_volume | 56 |
creator | Turner, J.R. White, E.M. Collins, M.A. Partridge, J.C. Douglas, R.H. |
description | The sensitivity hypothesis seeks to explain the correlation between the wavelength of visual pigment absorption maxima (
λ
max) and habitat type in fish and other marine animals in terms of the maximisation of photoreceptor photon catch. In recent years its legitimacy has been called into question as studies have either not tested data against the output of a predictive model or are confounded by the wide phylogeny of species used. We have addressed these issues by focussing on the distribution of
λ
max values in one family of marine teleosts, the lanternfish (Myctophidae). Visual pigment extract spectrophotometry has shown that 54 myctophid species have a single pigment in their retinae with a
λ
max falling within the range 480–492
nm. A further 4 species contain two visual pigments in their retinae. The spectral distribution of these visual pigments seems relatively confined when compared to other mesopelagic fishes. Mathematical modelling based on the assumptions of the sensitivity hypothesis shows that, contrary to the belief that deep-sea fishes’ visual pigments are shortwave shifted to maximise their sensitivity to downwelling sunlight, the visual pigments of myctophids instead seem better placed for the visualisation of bioluminescence. The predicted maximum visualisation distance of a blue/green bioluminescent point source by a myctophid was up to 30
m under ideal conditions. Two species (
Myctophum nitidulum and
Bolinichthys longipes) have previously been shown to have longwave-shifted spectral sensitivities and we show that they could theoretically detect stomiid far-red bioluminescence from as far as ca. 7
m. |
doi_str_mv | 10.1016/j.dsr.2009.01.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903646767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0967063709000272</els_id><sourcerecordid>20576666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-28c4855a93c0b4118d5117cf6fcede6f8b1e0be3ac2008bffffe6f1de856f8b73</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSNEJZbCB-AWIQHlkDCTP7YDp6oqUKkVF-CEZDn2mPUqawc7C-q3x9FWHDi0c7Fk_94bz7yieIFQIyB7t6tNinUDMNSANQB_VGxQ8KECxOFxsYGB8QpYy58UT1PaAWSRgE3x47tLLvjS-XJSfqHorUvb8uzmVi9h3jqj6O378tyoeVFLBlNpQyx_O_rj_M9ydGE67J2npMlrWl2WLZWGaK4SqWfFiVVToud352nx7ePl14vP1fWXT1cX59eV7rFbqkboTvS9GloNY4coTI_ItWVWkyFmxYgEI7VK5_nEaHPlWzQk-vWRt6fFm6PvHMOvA6VF7l3-0ZQnonBIcoCWdYyzlXx9L9l2HR-adngQbKDnLFcGX_4H7sIh-jyuxLxzQIGQITxCOoaUIlk5R7dX8VYiyDU_uZM5P7nmJwFlzi9rXt0Zq6TVZKPy2qV_wgb7rmVs9f5w5ChvOAcTZdJuTcO4SHqRJrh7uvwFtmqwJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196701810</pqid></control><display><type>article</type><title>Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Turner, J.R. ; White, E.M. ; Collins, M.A. ; Partridge, J.C. ; Douglas, R.H.</creator><creatorcontrib>Turner, J.R. ; White, E.M. ; Collins, M.A. ; Partridge, J.C. ; Douglas, R.H.</creatorcontrib><description>The sensitivity hypothesis seeks to explain the correlation between the wavelength of visual pigment absorption maxima (
λ
max) and habitat type in fish and other marine animals in terms of the maximisation of photoreceptor photon catch. In recent years its legitimacy has been called into question as studies have either not tested data against the output of a predictive model or are confounded by the wide phylogeny of species used. We have addressed these issues by focussing on the distribution of
λ
max values in one family of marine teleosts, the lanternfish (Myctophidae). Visual pigment extract spectrophotometry has shown that 54 myctophid species have a single pigment in their retinae with a
λ
max falling within the range 480–492
nm. A further 4 species contain two visual pigments in their retinae. The spectral distribution of these visual pigments seems relatively confined when compared to other mesopelagic fishes. Mathematical modelling based on the assumptions of the sensitivity hypothesis shows that, contrary to the belief that deep-sea fishes’ visual pigments are shortwave shifted to maximise their sensitivity to downwelling sunlight, the visual pigments of myctophids instead seem better placed for the visualisation of bioluminescence. The predicted maximum visualisation distance of a blue/green bioluminescent point source by a myctophid was up to 30
m under ideal conditions. Two species (
Myctophum nitidulum and
Bolinichthys longipes) have previously been shown to have longwave-shifted spectral sensitivities and we show that they could theoretically detect stomiid far-red bioluminescence from as far as ca. 7
m.</description><identifier>ISSN: 0967-0637</identifier><identifier>EISSN: 1879-0119</identifier><identifier>DOI: 10.1016/j.dsr.2009.01.007</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agnatha. Pisces ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Bioluminescence ; Bolinichthys ; Fish ; Fundamental and applied biological sciences. Psychology ; Hypotheses ; Lanternfish ; Marine ; Mathematical models ; Myctophidae ; Myctophum nitidulum ; Oceanography ; Oceans ; Pigments ; Sea water ecosystems ; Spectral sensitivity ; Synecology ; Teleostei ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution ; Visual pigments ; Visualisation distance</subject><ispartof>Deep-sea research. Part I, Oceanographic research papers, 2009-06, Vol.56 (6), p.1003-1017</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Jun 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-28c4855a93c0b4118d5117cf6fcede6f8b1e0be3ac2008bffffe6f1de856f8b73</citedby><cites>FETCH-LOGICAL-c514t-28c4855a93c0b4118d5117cf6fcede6f8b1e0be3ac2008bffffe6f1de856f8b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0967063709000272$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21543660$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Turner, J.R.</creatorcontrib><creatorcontrib>White, E.M.</creatorcontrib><creatorcontrib>Collins, M.A.</creatorcontrib><creatorcontrib>Partridge, J.C.</creatorcontrib><creatorcontrib>Douglas, R.H.</creatorcontrib><title>Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea</title><title>Deep-sea research. Part I, Oceanographic research papers</title><description>The sensitivity hypothesis seeks to explain the correlation between the wavelength of visual pigment absorption maxima (
λ
max) and habitat type in fish and other marine animals in terms of the maximisation of photoreceptor photon catch. In recent years its legitimacy has been called into question as studies have either not tested data against the output of a predictive model or are confounded by the wide phylogeny of species used. We have addressed these issues by focussing on the distribution of
λ
max values in one family of marine teleosts, the lanternfish (Myctophidae). Visual pigment extract spectrophotometry has shown that 54 myctophid species have a single pigment in their retinae with a
λ
max falling within the range 480–492
nm. A further 4 species contain two visual pigments in their retinae. The spectral distribution of these visual pigments seems relatively confined when compared to other mesopelagic fishes. Mathematical modelling based on the assumptions of the sensitivity hypothesis shows that, contrary to the belief that deep-sea fishes’ visual pigments are shortwave shifted to maximise their sensitivity to downwelling sunlight, the visual pigments of myctophids instead seem better placed for the visualisation of bioluminescence. The predicted maximum visualisation distance of a blue/green bioluminescent point source by a myctophid was up to 30
m under ideal conditions. Two species (
Myctophum nitidulum and
Bolinichthys longipes) have previously been shown to have longwave-shifted spectral sensitivities and we show that they could theoretically detect stomiid far-red bioluminescence from as far as ca. 7
m.</description><subject>Agnatha. Pisces</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Bioluminescence</subject><subject>Bolinichthys</subject><subject>Fish</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hypotheses</subject><subject>Lanternfish</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Myctophidae</subject><subject>Myctophum nitidulum</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Pigments</subject><subject>Sea water ecosystems</subject><subject>Spectral sensitivity</subject><subject>Synecology</subject><subject>Teleostei</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><subject>Visual pigments</subject><subject>Visualisation distance</subject><issn>0967-0637</issn><issn>1879-0119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxSNEJZbCB-AWIQHlkDCTP7YDp6oqUKkVF-CEZDn2mPUqawc7C-q3x9FWHDi0c7Fk_94bz7yieIFQIyB7t6tNinUDMNSANQB_VGxQ8KECxOFxsYGB8QpYy58UT1PaAWSRgE3x47tLLvjS-XJSfqHorUvb8uzmVi9h3jqj6O378tyoeVFLBlNpQyx_O_rj_M9ydGE67J2npMlrWl2WLZWGaK4SqWfFiVVToud352nx7ePl14vP1fWXT1cX59eV7rFbqkboTvS9GloNY4coTI_ItWVWkyFmxYgEI7VK5_nEaHPlWzQk-vWRt6fFm6PvHMOvA6VF7l3-0ZQnonBIcoCWdYyzlXx9L9l2HR-adngQbKDnLFcGX_4H7sIh-jyuxLxzQIGQITxCOoaUIlk5R7dX8VYiyDU_uZM5P7nmJwFlzi9rXt0Zq6TVZKPy2qV_wgb7rmVs9f5w5ChvOAcTZdJuTcO4SHqRJrh7uvwFtmqwJQ</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Turner, J.R.</creator><creator>White, E.M.</creator><creator>Collins, M.A.</creator><creator>Partridge, J.C.</creator><creator>Douglas, R.H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090601</creationdate><title>Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea</title><author>Turner, J.R. ; White, E.M. ; Collins, M.A. ; Partridge, J.C. ; Douglas, R.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-28c4855a93c0b4118d5117cf6fcede6f8b1e0be3ac2008bffffe6f1de856f8b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agnatha. Pisces</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Bioluminescence</topic><topic>Bolinichthys</topic><topic>Fish</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hypotheses</topic><topic>Lanternfish</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Myctophidae</topic><topic>Myctophum nitidulum</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Pigments</topic><topic>Sea water ecosystems</topic><topic>Spectral sensitivity</topic><topic>Synecology</topic><topic>Teleostei</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><topic>Visual pigments</topic><topic>Visualisation distance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, J.R.</creatorcontrib><creatorcontrib>White, E.M.</creatorcontrib><creatorcontrib>Collins, M.A.</creatorcontrib><creatorcontrib>Partridge, J.C.</creatorcontrib><creatorcontrib>Douglas, R.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Deep-sea research. Part I, Oceanographic research papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, J.R.</au><au>White, E.M.</au><au>Collins, M.A.</au><au>Partridge, J.C.</au><au>Douglas, R.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea</atitle><jtitle>Deep-sea research. Part I, Oceanographic research papers</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>56</volume><issue>6</issue><spage>1003</spage><epage>1017</epage><pages>1003-1017</pages><issn>0967-0637</issn><eissn>1879-0119</eissn><abstract>The sensitivity hypothesis seeks to explain the correlation between the wavelength of visual pigment absorption maxima (
λ
max) and habitat type in fish and other marine animals in terms of the maximisation of photoreceptor photon catch. In recent years its legitimacy has been called into question as studies have either not tested data against the output of a predictive model or are confounded by the wide phylogeny of species used. We have addressed these issues by focussing on the distribution of
λ
max values in one family of marine teleosts, the lanternfish (Myctophidae). Visual pigment extract spectrophotometry has shown that 54 myctophid species have a single pigment in their retinae with a
λ
max falling within the range 480–492
nm. A further 4 species contain two visual pigments in their retinae. The spectral distribution of these visual pigments seems relatively confined when compared to other mesopelagic fishes. Mathematical modelling based on the assumptions of the sensitivity hypothesis shows that, contrary to the belief that deep-sea fishes’ visual pigments are shortwave shifted to maximise their sensitivity to downwelling sunlight, the visual pigments of myctophids instead seem better placed for the visualisation of bioluminescence. The predicted maximum visualisation distance of a blue/green bioluminescent point source by a myctophid was up to 30
m under ideal conditions. Two species (
Myctophum nitidulum and
Bolinichthys longipes) have previously been shown to have longwave-shifted spectral sensitivities and we show that they could theoretically detect stomiid far-red bioluminescence from as far as ca. 7
m.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.dsr.2009.01.007</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-0637 |
ispartof | Deep-sea research. Part I, Oceanographic research papers, 2009-06, Vol.56 (6), p.1003-1017 |
issn | 0967-0637 1879-0119 |
language | eng |
recordid | cdi_proquest_miscellaneous_903646767 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Agnatha. Pisces Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences Bioluminescence Bolinichthys Fish Fundamental and applied biological sciences. Psychology Hypotheses Lanternfish Marine Mathematical models Myctophidae Myctophum nitidulum Oceanography Oceans Pigments Sea water ecosystems Spectral sensitivity Synecology Teleostei Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution Visual pigments Visualisation distance |
title | Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision%20in%20lanternfish%20(Myctophidae):%20Adaptations%20for%20viewing%20bioluminescence%20in%20the%20deep-sea&rft.jtitle=Deep-sea%20research.%20Part%20I,%20Oceanographic%20research%20papers&rft.au=Turner,%20J.R.&rft.date=2009-06-01&rft.volume=56&rft.issue=6&rft.spage=1003&rft.epage=1017&rft.pages=1003-1017&rft.issn=0967-0637&rft.eissn=1879-0119&rft_id=info:doi/10.1016/j.dsr.2009.01.007&rft_dat=%3Cproquest_cross%3E20576666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196701810&rft_id=info:pmid/&rft_els_id=S0967063709000272&rfr_iscdi=true |