Separating Y-predictive and Y-orthogonal variation in multi-block spectral data

Spectral data (X) may contain (a) variation that is correlated to concentrations or properties (Y) of samples and (b) variation that is unrelated to the same Y. This paper outlines an approach by which both such sources of variation may be resolved. The approach is based on a combination of hierarch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chemometrics 2006-08, Vol.20 (8-10), p.352-361
Hauptverfasser: Eriksson, Lennart, Toft, Marianne, Johansson, Erik, Wold, Svante, Trygg, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue 8-10
container_start_page 352
container_title Journal of Chemometrics
container_volume 20
creator Eriksson, Lennart
Toft, Marianne
Johansson, Erik
Wold, Svante
Trygg, Johan
description Spectral data (X) may contain (a) variation that is correlated to concentrations or properties (Y) of samples and (b) variation that is unrelated to the same Y. This paper outlines an approach by which both such sources of variation may be resolved. The approach is based on a combination of hierarchical modelling and orthogonal partial least squares (OPLS). OPLS is first used at the base hierarchical level. The output is a labelling of the resulting score vectors as representing Y‐predictive or Y‐orthogonal variation. OPLS is then also used at the top hierarchical level together with principal components analysis (PCA). With PCA the Y‐orthogonal X‐variation is analysed and interpreted. With OPLS the Y‐predictive X‐variation is examined. The applicability of the proposed strategy is illustrated using one multi‐block spectral data set. Copyright © 2007 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cem.1007
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_miscellaneous_903644920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29937256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5617-9f8ff1279feb2a3383214671936f3ffc53979c89f2f740f1b4191668bdf0c99a3</originalsourceid><addsrcrecordid>eNqF0Vtv2yAUAGBUdVLTbtJ-grWHtg_1xsUG8xilVy1pNWXXJ4QJpDS2ccFOln9fvEyVNmndCxzBJ87hHADeIvgeQYg_KF0PAdsDIwQ5TxEuvu-DESwKmnJSkANwGMIDhPGOZCNwN9et9LKzzTL5kbZeL6zq7FonslnEA-e7e7d0jayStfQ2OtcktknqvupsWlZOrZLQatX5KBayk6_BKyOroN_83o_Al8uLz5PrdHp3dTMZT1OVU8RSbgpjEGbc6BJLEuvCKKMMcUINMUblhDOuCm6wYRk0qMwQR5QW5cJAxbkkR-Bs927Y6LYvRettLf1WOGnFuf06Fs4vRV_3AhFEeOQnO95699jr0InaBqWrSjba9UFwSGiWcQyjPH5RkuxXney_EMcGM5zTCN_9BR9c72NLo8EIYxjXiE53SHkXgtfm-UcIimGwIg52CIbE6Y5ubKW3_3RicjH709vQ6Z_PXvqVoIywXHy7vRLoU5bPp_OZ-EieAPzZscE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221220221</pqid></control><display><type>article</type><title>Separating Y-predictive and Y-orthogonal variation in multi-block spectral data</title><source>Access via Wiley Online Library</source><creator>Eriksson, Lennart ; Toft, Marianne ; Johansson, Erik ; Wold, Svante ; Trygg, Johan</creator><creatorcontrib>Eriksson, Lennart ; Toft, Marianne ; Johansson, Erik ; Wold, Svante ; Trygg, Johan</creatorcontrib><description>Spectral data (X) may contain (a) variation that is correlated to concentrations or properties (Y) of samples and (b) variation that is unrelated to the same Y. This paper outlines an approach by which both such sources of variation may be resolved. The approach is based on a combination of hierarchical modelling and orthogonal partial least squares (OPLS). OPLS is first used at the base hierarchical level. The output is a labelling of the resulting score vectors as representing Y‐predictive or Y‐orthogonal variation. OPLS is then also used at the top hierarchical level together with principal components analysis (PCA). With PCA the Y‐orthogonal X‐variation is analysed and interpreted. With OPLS the Y‐predictive X‐variation is examined. The applicability of the proposed strategy is illustrated using one multi‐block spectral data set. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.1007</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Chemistry ; hierarchical modelling ; Mathematical models ; multi-block spectral data ; OPLS ; PCA ; PLS ; Spectrum analysis ; Studies ; Y-orthogonal variation ; Y-predictive variation</subject><ispartof>Journal of Chemometrics, 2006-08, Vol.20 (8-10), p.352-361</ispartof><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Aug-Oct 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5617-9f8ff1279feb2a3383214671936f3ffc53979c89f2f740f1b4191668bdf0c99a3</citedby><cites>FETCH-LOGICAL-c5617-9f8ff1279feb2a3383214671936f3ffc53979c89f2f740f1b4191668bdf0c99a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.1007$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.1007$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-13139$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Eriksson, Lennart</creatorcontrib><creatorcontrib>Toft, Marianne</creatorcontrib><creatorcontrib>Johansson, Erik</creatorcontrib><creatorcontrib>Wold, Svante</creatorcontrib><creatorcontrib>Trygg, Johan</creatorcontrib><title>Separating Y-predictive and Y-orthogonal variation in multi-block spectral data</title><title>Journal of Chemometrics</title><addtitle>J. Chemometrics</addtitle><description>Spectral data (X) may contain (a) variation that is correlated to concentrations or properties (Y) of samples and (b) variation that is unrelated to the same Y. This paper outlines an approach by which both such sources of variation may be resolved. The approach is based on a combination of hierarchical modelling and orthogonal partial least squares (OPLS). OPLS is first used at the base hierarchical level. The output is a labelling of the resulting score vectors as representing Y‐predictive or Y‐orthogonal variation. OPLS is then also used at the top hierarchical level together with principal components analysis (PCA). With PCA the Y‐orthogonal X‐variation is analysed and interpreted. With OPLS the Y‐predictive X‐variation is examined. The applicability of the proposed strategy is illustrated using one multi‐block spectral data set. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><subject>Chemistry</subject><subject>hierarchical modelling</subject><subject>Mathematical models</subject><subject>multi-block spectral data</subject><subject>OPLS</subject><subject>PCA</subject><subject>PLS</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Y-orthogonal variation</subject><subject>Y-predictive variation</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0Vtv2yAUAGBUdVLTbtJ-grWHtg_1xsUG8xilVy1pNWXXJ4QJpDS2ccFOln9fvEyVNmndCxzBJ87hHADeIvgeQYg_KF0PAdsDIwQ5TxEuvu-DESwKmnJSkANwGMIDhPGOZCNwN9et9LKzzTL5kbZeL6zq7FonslnEA-e7e7d0jayStfQ2OtcktknqvupsWlZOrZLQatX5KBayk6_BKyOroN_83o_Al8uLz5PrdHp3dTMZT1OVU8RSbgpjEGbc6BJLEuvCKKMMcUINMUblhDOuCm6wYRk0qMwQR5QW5cJAxbkkR-Bs927Y6LYvRettLf1WOGnFuf06Fs4vRV_3AhFEeOQnO95699jr0InaBqWrSjba9UFwSGiWcQyjPH5RkuxXney_EMcGM5zTCN_9BR9c72NLo8EIYxjXiE53SHkXgtfm-UcIimGwIg52CIbE6Y5ubKW3_3RicjH709vQ6Z_PXvqVoIywXHy7vRLoU5bPp_OZ-EieAPzZscE</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Eriksson, Lennart</creator><creator>Toft, Marianne</creator><creator>Johansson, Erik</creator><creator>Wold, Svante</creator><creator>Trygg, Johan</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope></search><sort><creationdate>200608</creationdate><title>Separating Y-predictive and Y-orthogonal variation in multi-block spectral data</title><author>Eriksson, Lennart ; Toft, Marianne ; Johansson, Erik ; Wold, Svante ; Trygg, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5617-9f8ff1279feb2a3383214671936f3ffc53979c89f2f740f1b4191668bdf0c99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemistry</topic><topic>hierarchical modelling</topic><topic>Mathematical models</topic><topic>multi-block spectral data</topic><topic>OPLS</topic><topic>PCA</topic><topic>PLS</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Y-orthogonal variation</topic><topic>Y-predictive variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eriksson, Lennart</creatorcontrib><creatorcontrib>Toft, Marianne</creatorcontrib><creatorcontrib>Johansson, Erik</creatorcontrib><creatorcontrib>Wold, Svante</creatorcontrib><creatorcontrib>Trygg, Johan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Journal of Chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eriksson, Lennart</au><au>Toft, Marianne</au><au>Johansson, Erik</au><au>Wold, Svante</au><au>Trygg, Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separating Y-predictive and Y-orthogonal variation in multi-block spectral data</atitle><jtitle>Journal of Chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2006-08</date><risdate>2006</risdate><volume>20</volume><issue>8-10</issue><spage>352</spage><epage>361</epage><pages>352-361</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>Spectral data (X) may contain (a) variation that is correlated to concentrations or properties (Y) of samples and (b) variation that is unrelated to the same Y. This paper outlines an approach by which both such sources of variation may be resolved. The approach is based on a combination of hierarchical modelling and orthogonal partial least squares (OPLS). OPLS is first used at the base hierarchical level. The output is a labelling of the resulting score vectors as representing Y‐predictive or Y‐orthogonal variation. OPLS is then also used at the top hierarchical level together with principal components analysis (PCA). With PCA the Y‐orthogonal X‐variation is analysed and interpreted. With OPLS the Y‐predictive X‐variation is examined. The applicability of the proposed strategy is illustrated using one multi‐block spectral data set. Copyright © 2007 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cem.1007</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of Chemometrics, 2006-08, Vol.20 (8-10), p.352-361
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_miscellaneous_903644920
source Access via Wiley Online Library
subjects Chemistry
hierarchical modelling
Mathematical models
multi-block spectral data
OPLS
PCA
PLS
Spectrum analysis
Studies
Y-orthogonal variation
Y-predictive variation
title Separating Y-predictive and Y-orthogonal variation in multi-block spectral data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separating%20Y-predictive%20and%20Y-orthogonal%20variation%20in%20multi-block%20spectral%20data&rft.jtitle=Journal%20of%20Chemometrics&rft.au=Eriksson,%20Lennart&rft.date=2006-08&rft.volume=20&rft.issue=8-10&rft.spage=352&rft.epage=361&rft.pages=352-361&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.1007&rft_dat=%3Cproquest_swepu%3E29937256%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221220221&rft_id=info:pmid/&rfr_iscdi=true