Separating Y-predictive and Y-orthogonal variation in multi-block spectral data
Spectral data (X) may contain (a) variation that is correlated to concentrations or properties (Y) of samples and (b) variation that is unrelated to the same Y. This paper outlines an approach by which both such sources of variation may be resolved. The approach is based on a combination of hierarch...
Gespeichert in:
Veröffentlicht in: | Journal of Chemometrics 2006-08, Vol.20 (8-10), p.352-361 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 8-10 |
container_start_page | 352 |
container_title | Journal of Chemometrics |
container_volume | 20 |
creator | Eriksson, Lennart Toft, Marianne Johansson, Erik Wold, Svante Trygg, Johan |
description | Spectral data (X) may contain (a) variation that is correlated to concentrations or properties (Y) of samples and (b) variation that is unrelated to the same Y. This paper outlines an approach by which both such sources of variation may be resolved. The approach is based on a combination of hierarchical modelling and orthogonal partial least squares (OPLS). OPLS is first used at the base hierarchical level. The output is a labelling of the resulting score vectors as representing Y‐predictive or Y‐orthogonal variation. OPLS is then also used at the top hierarchical level together with principal components analysis (PCA). With PCA the Y‐orthogonal X‐variation is analysed and interpreted. With OPLS the Y‐predictive X‐variation is examined. The applicability of the proposed strategy is illustrated using one multi‐block spectral data set. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/cem.1007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_miscellaneous_903644920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29937256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5617-9f8ff1279feb2a3383214671936f3ffc53979c89f2f740f1b4191668bdf0c99a3</originalsourceid><addsrcrecordid>eNqF0Vtv2yAUAGBUdVLTbtJ-grWHtg_1xsUG8xilVy1pNWXXJ4QJpDS2ccFOln9fvEyVNmndCxzBJ87hHADeIvgeQYg_KF0PAdsDIwQ5TxEuvu-DESwKmnJSkANwGMIDhPGOZCNwN9et9LKzzTL5kbZeL6zq7FonslnEA-e7e7d0jayStfQ2OtcktknqvupsWlZOrZLQatX5KBayk6_BKyOroN_83o_Al8uLz5PrdHp3dTMZT1OVU8RSbgpjEGbc6BJLEuvCKKMMcUINMUblhDOuCm6wYRk0qMwQR5QW5cJAxbkkR-Bs927Y6LYvRettLf1WOGnFuf06Fs4vRV_3AhFEeOQnO95699jr0InaBqWrSjba9UFwSGiWcQyjPH5RkuxXney_EMcGM5zTCN_9BR9c72NLo8EIYxjXiE53SHkXgtfm-UcIimGwIg52CIbE6Y5ubKW3_3RicjH709vQ6Z_PXvqVoIywXHy7vRLoU5bPp_OZ-EieAPzZscE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221220221</pqid></control><display><type>article</type><title>Separating Y-predictive and Y-orthogonal variation in multi-block spectral data</title><source>Access via Wiley Online Library</source><creator>Eriksson, Lennart ; Toft, Marianne ; Johansson, Erik ; Wold, Svante ; Trygg, Johan</creator><creatorcontrib>Eriksson, Lennart ; Toft, Marianne ; Johansson, Erik ; Wold, Svante ; Trygg, Johan</creatorcontrib><description>Spectral data (X) may contain (a) variation that is correlated to concentrations or properties (Y) of samples and (b) variation that is unrelated to the same Y. This paper outlines an approach by which both such sources of variation may be resolved. The approach is based on a combination of hierarchical modelling and orthogonal partial least squares (OPLS). OPLS is first used at the base hierarchical level. The output is a labelling of the resulting score vectors as representing Y‐predictive or Y‐orthogonal variation. OPLS is then also used at the top hierarchical level together with principal components analysis (PCA). With PCA the Y‐orthogonal X‐variation is analysed and interpreted. With OPLS the Y‐predictive X‐variation is examined. The applicability of the proposed strategy is illustrated using one multi‐block spectral data set. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.1007</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Chemistry ; hierarchical modelling ; Mathematical models ; multi-block spectral data ; OPLS ; PCA ; PLS ; Spectrum analysis ; Studies ; Y-orthogonal variation ; Y-predictive variation</subject><ispartof>Journal of Chemometrics, 2006-08, Vol.20 (8-10), p.352-361</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Aug-Oct 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5617-9f8ff1279feb2a3383214671936f3ffc53979c89f2f740f1b4191668bdf0c99a3</citedby><cites>FETCH-LOGICAL-c5617-9f8ff1279feb2a3383214671936f3ffc53979c89f2f740f1b4191668bdf0c99a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.1007$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.1007$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-13139$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Eriksson, Lennart</creatorcontrib><creatorcontrib>Toft, Marianne</creatorcontrib><creatorcontrib>Johansson, Erik</creatorcontrib><creatorcontrib>Wold, Svante</creatorcontrib><creatorcontrib>Trygg, Johan</creatorcontrib><title>Separating Y-predictive and Y-orthogonal variation in multi-block spectral data</title><title>Journal of Chemometrics</title><addtitle>J. Chemometrics</addtitle><description>Spectral data (X) may contain (a) variation that is correlated to concentrations or properties (Y) of samples and (b) variation that is unrelated to the same Y. This paper outlines an approach by which both such sources of variation may be resolved. The approach is based on a combination of hierarchical modelling and orthogonal partial least squares (OPLS). OPLS is first used at the base hierarchical level. The output is a labelling of the resulting score vectors as representing Y‐predictive or Y‐orthogonal variation. OPLS is then also used at the top hierarchical level together with principal components analysis (PCA). With PCA the Y‐orthogonal X‐variation is analysed and interpreted. With OPLS the Y‐predictive X‐variation is examined. The applicability of the proposed strategy is illustrated using one multi‐block spectral data set. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>Chemistry</subject><subject>hierarchical modelling</subject><subject>Mathematical models</subject><subject>multi-block spectral data</subject><subject>OPLS</subject><subject>PCA</subject><subject>PLS</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Y-orthogonal variation</subject><subject>Y-predictive variation</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0Vtv2yAUAGBUdVLTbtJ-grWHtg_1xsUG8xilVy1pNWXXJ4QJpDS2ccFOln9fvEyVNmndCxzBJ87hHADeIvgeQYg_KF0PAdsDIwQ5TxEuvu-DESwKmnJSkANwGMIDhPGOZCNwN9et9LKzzTL5kbZeL6zq7FonslnEA-e7e7d0jayStfQ2OtcktknqvupsWlZOrZLQatX5KBayk6_BKyOroN_83o_Al8uLz5PrdHp3dTMZT1OVU8RSbgpjEGbc6BJLEuvCKKMMcUINMUblhDOuCm6wYRk0qMwQR5QW5cJAxbkkR-Bs927Y6LYvRettLf1WOGnFuf06Fs4vRV_3AhFEeOQnO95699jr0InaBqWrSjba9UFwSGiWcQyjPH5RkuxXney_EMcGM5zTCN_9BR9c72NLo8EIYxjXiE53SHkXgtfm-UcIimGwIg52CIbE6Y5ubKW3_3RicjH709vQ6Z_PXvqVoIywXHy7vRLoU5bPp_OZ-EieAPzZscE</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Eriksson, Lennart</creator><creator>Toft, Marianne</creator><creator>Johansson, Erik</creator><creator>Wold, Svante</creator><creator>Trygg, Johan</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope></search><sort><creationdate>200608</creationdate><title>Separating Y-predictive and Y-orthogonal variation in multi-block spectral data</title><author>Eriksson, Lennart ; Toft, Marianne ; Johansson, Erik ; Wold, Svante ; Trygg, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5617-9f8ff1279feb2a3383214671936f3ffc53979c89f2f740f1b4191668bdf0c99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemistry</topic><topic>hierarchical modelling</topic><topic>Mathematical models</topic><topic>multi-block spectral data</topic><topic>OPLS</topic><topic>PCA</topic><topic>PLS</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Y-orthogonal variation</topic><topic>Y-predictive variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eriksson, Lennart</creatorcontrib><creatorcontrib>Toft, Marianne</creatorcontrib><creatorcontrib>Johansson, Erik</creatorcontrib><creatorcontrib>Wold, Svante</creatorcontrib><creatorcontrib>Trygg, Johan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Journal of Chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eriksson, Lennart</au><au>Toft, Marianne</au><au>Johansson, Erik</au><au>Wold, Svante</au><au>Trygg, Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separating Y-predictive and Y-orthogonal variation in multi-block spectral data</atitle><jtitle>Journal of Chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2006-08</date><risdate>2006</risdate><volume>20</volume><issue>8-10</issue><spage>352</spage><epage>361</epage><pages>352-361</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>Spectral data (X) may contain (a) variation that is correlated to concentrations or properties (Y) of samples and (b) variation that is unrelated to the same Y. This paper outlines an approach by which both such sources of variation may be resolved. The approach is based on a combination of hierarchical modelling and orthogonal partial least squares (OPLS). OPLS is first used at the base hierarchical level. The output is a labelling of the resulting score vectors as representing Y‐predictive or Y‐orthogonal variation. OPLS is then also used at the top hierarchical level together with principal components analysis (PCA). With PCA the Y‐orthogonal X‐variation is analysed and interpreted. With OPLS the Y‐predictive X‐variation is examined. The applicability of the proposed strategy is illustrated using one multi‐block spectral data set. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/cem.1007</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of Chemometrics, 2006-08, Vol.20 (8-10), p.352-361 |
issn | 0886-9383 1099-128X |
language | eng |
recordid | cdi_proquest_miscellaneous_903644920 |
source | Access via Wiley Online Library |
subjects | Chemistry hierarchical modelling Mathematical models multi-block spectral data OPLS PCA PLS Spectrum analysis Studies Y-orthogonal variation Y-predictive variation |
title | Separating Y-predictive and Y-orthogonal variation in multi-block spectral data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separating%20Y-predictive%20and%20Y-orthogonal%20variation%20in%20multi-block%20spectral%20data&rft.jtitle=Journal%20of%20Chemometrics&rft.au=Eriksson,%20Lennart&rft.date=2006-08&rft.volume=20&rft.issue=8-10&rft.spage=352&rft.epage=361&rft.pages=352-361&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.1007&rft_dat=%3Cproquest_swepu%3E29937256%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221220221&rft_id=info:pmid/&rfr_iscdi=true |