Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy
The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply tempera...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2009-04, Vol.34 (4), p.448-456 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 4 |
container_start_page | 448 |
container_title | Energy (Oxford) |
container_volume | 34 |
creator | Chang, Yung-Chung Chen, Wu-Hsing |
description | The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply temperatures in chillers, which are used to solve the optimal chiller loading (OCL) problem. A linear input–output model is utilized as a substitute for the sigmoid function, which eliminates the shortcoming of the conventional HNN method. Notably, HNN overcomes the flaw in the Lagrangian method in that the latter cannot be utilized for solving the OCL problem as its power-consumption models include non-convex functions. The chilled water supply temperatures are used as variables to be solved for a decoupled air-conditioning system and solve the problem using the HNN method to overcome the defect in the Lagrangian method. After analysis of the case study and comparison of results using these two methods, we conclude that the HNN method solves the problem of the Lagrangian method, and produces highly accurate results. The HNN method can be applied to the operation of air-conditioning systems. |
doi_str_mv | 10.1016/j.energy.2008.12.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903642838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544208003265</els_id><sourcerecordid>903642838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-bd3a26b66137703e66ea6e67f61368e7645693e5cfdaf9df98055e82355738083</originalsourceid><addsrcrecordid>eNp9kU9v3CAQxX1opOZPv0EPXNqc1h3AYHOpVEVpUylSLukZETwkbFjjAE60376svMoxJ6TR771h3muarxRaClT-2LY4YXrctwxgaClrgcKn5hS4hI3oOva5Oct5CwBiUOq02d_Nxe9MIPbJh4AjeTMFEym4mzGZsiQk1gS7BFN8nEh0ZLeE4ueAR0UieZ8rnsmS_fRIbuLsPIaRTLik6jtheYvpmbhYSfN6QNYPXjQnzoSMX47vefPv9_X91c3m9u7P36tftxvLlSqbh5EbJh-kpLzvgaOUaCTK3tWBHLCXnZCKo7BuNE6NTg0gBA6MC9HzAQZ-3lyuvnOKLwvmonc-WwzBTBiXrFWNpmMDP5DfPyR513V9za2C3QraFHNO6PScaohprynoQwt6q9cj9aEFTZmuLVTZt6O_yTVUl8xkfX7XMipAMlCV-7lyWGN59Zh0th4ni6NPaIseo_940X8MpKOT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34447058</pqid></control><display><type>article</type><title>Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy</title><source>Elsevier ScienceDirect Journals</source><creator>Chang, Yung-Chung ; Chen, Wu-Hsing</creator><creatorcontrib>Chang, Yung-Chung ; Chen, Wu-Hsing</creatorcontrib><description>The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply temperatures in chillers, which are used to solve the optimal chiller loading (OCL) problem. A linear input–output model is utilized as a substitute for the sigmoid function, which eliminates the shortcoming of the conventional HNN method. Notably, HNN overcomes the flaw in the Lagrangian method in that the latter cannot be utilized for solving the OCL problem as its power-consumption models include non-convex functions. The chilled water supply temperatures are used as variables to be solved for a decoupled air-conditioning system and solve the problem using the HNN method to overcome the defect in the Lagrangian method. After analysis of the case study and comparison of results using these two methods, we conclude that the HNN method solves the problem of the Lagrangian method, and produces highly accurate results. The HNN method can be applied to the operation of air-conditioning systems.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2008.12.010</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air conditioning. Ventilation ; Applied sciences ; Decoupled system ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General. Properties of wet air ; Heating, air conditioning and ventilation ; Hopfield neural network ; Lagrangian method ; Optimal chiller loading ; Rational use of energy: conservation and recovery of energy</subject><ispartof>Energy (Oxford), 2009-04, Vol.34 (4), p.448-456</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-bd3a26b66137703e66ea6e67f61368e7645693e5cfdaf9df98055e82355738083</citedby><cites>FETCH-LOGICAL-c399t-bd3a26b66137703e66ea6e67f61368e7645693e5cfdaf9df98055e82355738083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544208003265$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21506209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Yung-Chung</creatorcontrib><creatorcontrib>Chen, Wu-Hsing</creatorcontrib><title>Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy</title><title>Energy (Oxford)</title><description>The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply temperatures in chillers, which are used to solve the optimal chiller loading (OCL) problem. A linear input–output model is utilized as a substitute for the sigmoid function, which eliminates the shortcoming of the conventional HNN method. Notably, HNN overcomes the flaw in the Lagrangian method in that the latter cannot be utilized for solving the OCL problem as its power-consumption models include non-convex functions. The chilled water supply temperatures are used as variables to be solved for a decoupled air-conditioning system and solve the problem using the HNN method to overcome the defect in the Lagrangian method. After analysis of the case study and comparison of results using these two methods, we conclude that the HNN method solves the problem of the Lagrangian method, and produces highly accurate results. The HNN method can be applied to the operation of air-conditioning systems.</description><subject>Air conditioning. Ventilation</subject><subject>Applied sciences</subject><subject>Decoupled system</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General. Properties of wet air</subject><subject>Heating, air conditioning and ventilation</subject><subject>Hopfield neural network</subject><subject>Lagrangian method</subject><subject>Optimal chiller loading</subject><subject>Rational use of energy: conservation and recovery of energy</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v3CAQxX1opOZPv0EPXNqc1h3AYHOpVEVpUylSLukZETwkbFjjAE60376svMoxJ6TR771h3muarxRaClT-2LY4YXrctwxgaClrgcKn5hS4hI3oOva5Oct5CwBiUOq02d_Nxe9MIPbJh4AjeTMFEym4mzGZsiQk1gS7BFN8nEh0ZLeE4ueAR0UieZ8rnsmS_fRIbuLsPIaRTLik6jtheYvpmbhYSfN6QNYPXjQnzoSMX47vefPv9_X91c3m9u7P36tftxvLlSqbh5EbJh-kpLzvgaOUaCTK3tWBHLCXnZCKo7BuNE6NTg0gBA6MC9HzAQZ-3lyuvnOKLwvmonc-WwzBTBiXrFWNpmMDP5DfPyR513V9za2C3QraFHNO6PScaohprynoQwt6q9cj9aEFTZmuLVTZt6O_yTVUl8xkfX7XMipAMlCV-7lyWGN59Zh0th4ni6NPaIseo_940X8MpKOT</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Chang, Yung-Chung</creator><creator>Chen, Wu-Hsing</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy</title><author>Chang, Yung-Chung ; Chen, Wu-Hsing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-bd3a26b66137703e66ea6e67f61368e7645693e5cfdaf9df98055e82355738083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Air conditioning. Ventilation</topic><topic>Applied sciences</topic><topic>Decoupled system</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General. Properties of wet air</topic><topic>Heating, air conditioning and ventilation</topic><topic>Hopfield neural network</topic><topic>Lagrangian method</topic><topic>Optimal chiller loading</topic><topic>Rational use of energy: conservation and recovery of energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Yung-Chung</creatorcontrib><creatorcontrib>Chen, Wu-Hsing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Yung-Chung</au><au>Chen, Wu-Hsing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy</atitle><jtitle>Energy (Oxford)</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>34</volume><issue>4</issue><spage>448</spage><epage>456</epage><pages>448-456</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply temperatures in chillers, which are used to solve the optimal chiller loading (OCL) problem. A linear input–output model is utilized as a substitute for the sigmoid function, which eliminates the shortcoming of the conventional HNN method. Notably, HNN overcomes the flaw in the Lagrangian method in that the latter cannot be utilized for solving the OCL problem as its power-consumption models include non-convex functions. The chilled water supply temperatures are used as variables to be solved for a decoupled air-conditioning system and solve the problem using the HNN method to overcome the defect in the Lagrangian method. After analysis of the case study and comparison of results using these two methods, we conclude that the HNN method solves the problem of the Lagrangian method, and produces highly accurate results. The HNN method can be applied to the operation of air-conditioning systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2008.12.010</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2009-04, Vol.34 (4), p.448-456 |
issn | 0360-5442 |
language | eng |
recordid | cdi_proquest_miscellaneous_903642838 |
source | Elsevier ScienceDirect Journals |
subjects | Air conditioning. Ventilation Applied sciences Decoupled system Energy Energy. Thermal use of fuels Exact sciences and technology General. Properties of wet air Heating, air conditioning and ventilation Hopfield neural network Lagrangian method Optimal chiller loading Rational use of energy: conservation and recovery of energy |
title | Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20chilled%20water%20temperature%20calculation%20of%20multiple%20chiller%20systems%20using%20Hopfield%20neural%20network%20for%20saving%20energy&rft.jtitle=Energy%20(Oxford)&rft.au=Chang,%20Yung-Chung&rft.date=2009-04-01&rft.volume=34&rft.issue=4&rft.spage=448&rft.epage=456&rft.pages=448-456&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2008.12.010&rft_dat=%3Cproquest_cross%3E903642838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34447058&rft_id=info:pmid/&rft_els_id=S0360544208003265&rfr_iscdi=true |