Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy

The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply tempera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2009-04, Vol.34 (4), p.448-456
Hauptverfasser: Chang, Yung-Chung, Chen, Wu-Hsing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 4
container_start_page 448
container_title Energy (Oxford)
container_volume 34
creator Chang, Yung-Chung
Chen, Wu-Hsing
description The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply temperatures in chillers, which are used to solve the optimal chiller loading (OCL) problem. A linear input–output model is utilized as a substitute for the sigmoid function, which eliminates the shortcoming of the conventional HNN method. Notably, HNN overcomes the flaw in the Lagrangian method in that the latter cannot be utilized for solving the OCL problem as its power-consumption models include non-convex functions. The chilled water supply temperatures are used as variables to be solved for a decoupled air-conditioning system and solve the problem using the HNN method to overcome the defect in the Lagrangian method. After analysis of the case study and comparison of results using these two methods, we conclude that the HNN method solves the problem of the Lagrangian method, and produces highly accurate results. The HNN method can be applied to the operation of air-conditioning systems.
doi_str_mv 10.1016/j.energy.2008.12.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903642838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544208003265</els_id><sourcerecordid>903642838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-bd3a26b66137703e66ea6e67f61368e7645693e5cfdaf9df98055e82355738083</originalsourceid><addsrcrecordid>eNp9kU9v3CAQxX1opOZPv0EPXNqc1h3AYHOpVEVpUylSLukZETwkbFjjAE60376svMoxJ6TR771h3muarxRaClT-2LY4YXrctwxgaClrgcKn5hS4hI3oOva5Oct5CwBiUOq02d_Nxe9MIPbJh4AjeTMFEym4mzGZsiQk1gS7BFN8nEh0ZLeE4ueAR0UieZ8rnsmS_fRIbuLsPIaRTLik6jtheYvpmbhYSfN6QNYPXjQnzoSMX47vefPv9_X91c3m9u7P36tftxvLlSqbh5EbJh-kpLzvgaOUaCTK3tWBHLCXnZCKo7BuNE6NTg0gBA6MC9HzAQZ-3lyuvnOKLwvmonc-WwzBTBiXrFWNpmMDP5DfPyR513V9za2C3QraFHNO6PScaohprynoQwt6q9cj9aEFTZmuLVTZt6O_yTVUl8xkfX7XMipAMlCV-7lyWGN59Zh0th4ni6NPaIseo_940X8MpKOT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34447058</pqid></control><display><type>article</type><title>Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy</title><source>Elsevier ScienceDirect Journals</source><creator>Chang, Yung-Chung ; Chen, Wu-Hsing</creator><creatorcontrib>Chang, Yung-Chung ; Chen, Wu-Hsing</creatorcontrib><description>The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply temperatures in chillers, which are used to solve the optimal chiller loading (OCL) problem. A linear input–output model is utilized as a substitute for the sigmoid function, which eliminates the shortcoming of the conventional HNN method. Notably, HNN overcomes the flaw in the Lagrangian method in that the latter cannot be utilized for solving the OCL problem as its power-consumption models include non-convex functions. The chilled water supply temperatures are used as variables to be solved for a decoupled air-conditioning system and solve the problem using the HNN method to overcome the defect in the Lagrangian method. After analysis of the case study and comparison of results using these two methods, we conclude that the HNN method solves the problem of the Lagrangian method, and produces highly accurate results. The HNN method can be applied to the operation of air-conditioning systems.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2008.12.010</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air conditioning. Ventilation ; Applied sciences ; Decoupled system ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General. Properties of wet air ; Heating, air conditioning and ventilation ; Hopfield neural network ; Lagrangian method ; Optimal chiller loading ; Rational use of energy: conservation and recovery of energy</subject><ispartof>Energy (Oxford), 2009-04, Vol.34 (4), p.448-456</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-bd3a26b66137703e66ea6e67f61368e7645693e5cfdaf9df98055e82355738083</citedby><cites>FETCH-LOGICAL-c399t-bd3a26b66137703e66ea6e67f61368e7645693e5cfdaf9df98055e82355738083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544208003265$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21506209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Yung-Chung</creatorcontrib><creatorcontrib>Chen, Wu-Hsing</creatorcontrib><title>Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy</title><title>Energy (Oxford)</title><description>The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply temperatures in chillers, which are used to solve the optimal chiller loading (OCL) problem. A linear input–output model is utilized as a substitute for the sigmoid function, which eliminates the shortcoming of the conventional HNN method. Notably, HNN overcomes the flaw in the Lagrangian method in that the latter cannot be utilized for solving the OCL problem as its power-consumption models include non-convex functions. The chilled water supply temperatures are used as variables to be solved for a decoupled air-conditioning system and solve the problem using the HNN method to overcome the defect in the Lagrangian method. After analysis of the case study and comparison of results using these two methods, we conclude that the HNN method solves the problem of the Lagrangian method, and produces highly accurate results. The HNN method can be applied to the operation of air-conditioning systems.</description><subject>Air conditioning. Ventilation</subject><subject>Applied sciences</subject><subject>Decoupled system</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General. Properties of wet air</subject><subject>Heating, air conditioning and ventilation</subject><subject>Hopfield neural network</subject><subject>Lagrangian method</subject><subject>Optimal chiller loading</subject><subject>Rational use of energy: conservation and recovery of energy</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v3CAQxX1opOZPv0EPXNqc1h3AYHOpVEVpUylSLukZETwkbFjjAE60376svMoxJ6TR771h3muarxRaClT-2LY4YXrctwxgaClrgcKn5hS4hI3oOva5Oct5CwBiUOq02d_Nxe9MIPbJh4AjeTMFEym4mzGZsiQk1gS7BFN8nEh0ZLeE4ueAR0UieZ8rnsmS_fRIbuLsPIaRTLik6jtheYvpmbhYSfN6QNYPXjQnzoSMX47vefPv9_X91c3m9u7P36tftxvLlSqbh5EbJh-kpLzvgaOUaCTK3tWBHLCXnZCKo7BuNE6NTg0gBA6MC9HzAQZ-3lyuvnOKLwvmonc-WwzBTBiXrFWNpmMDP5DfPyR513V9za2C3QraFHNO6PScaohprynoQwt6q9cj9aEFTZmuLVTZt6O_yTVUl8xkfX7XMipAMlCV-7lyWGN59Zh0th4ni6NPaIseo_940X8MpKOT</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Chang, Yung-Chung</creator><creator>Chen, Wu-Hsing</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy</title><author>Chang, Yung-Chung ; Chen, Wu-Hsing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-bd3a26b66137703e66ea6e67f61368e7645693e5cfdaf9df98055e82355738083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Air conditioning. Ventilation</topic><topic>Applied sciences</topic><topic>Decoupled system</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General. Properties of wet air</topic><topic>Heating, air conditioning and ventilation</topic><topic>Hopfield neural network</topic><topic>Lagrangian method</topic><topic>Optimal chiller loading</topic><topic>Rational use of energy: conservation and recovery of energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Yung-Chung</creatorcontrib><creatorcontrib>Chen, Wu-Hsing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Yung-Chung</au><au>Chen, Wu-Hsing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy</atitle><jtitle>Energy (Oxford)</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>34</volume><issue>4</issue><spage>448</spage><epage>456</epage><pages>448-456</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply temperatures in chillers, which are used to solve the optimal chiller loading (OCL) problem. A linear input–output model is utilized as a substitute for the sigmoid function, which eliminates the shortcoming of the conventional HNN method. Notably, HNN overcomes the flaw in the Lagrangian method in that the latter cannot be utilized for solving the OCL problem as its power-consumption models include non-convex functions. The chilled water supply temperatures are used as variables to be solved for a decoupled air-conditioning system and solve the problem using the HNN method to overcome the defect in the Lagrangian method. After analysis of the case study and comparison of results using these two methods, we conclude that the HNN method solves the problem of the Lagrangian method, and produces highly accurate results. The HNN method can be applied to the operation of air-conditioning systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2008.12.010</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2009-04, Vol.34 (4), p.448-456
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_903642838
source Elsevier ScienceDirect Journals
subjects Air conditioning. Ventilation
Applied sciences
Decoupled system
Energy
Energy. Thermal use of fuels
Exact sciences and technology
General. Properties of wet air
Heating, air conditioning and ventilation
Hopfield neural network
Lagrangian method
Optimal chiller loading
Rational use of energy: conservation and recovery of energy
title Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20chilled%20water%20temperature%20calculation%20of%20multiple%20chiller%20systems%20using%20Hopfield%20neural%20network%20for%20saving%20energy&rft.jtitle=Energy%20(Oxford)&rft.au=Chang,%20Yung-Chung&rft.date=2009-04-01&rft.volume=34&rft.issue=4&rft.spage=448&rft.epage=456&rft.pages=448-456&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2008.12.010&rft_dat=%3Cproquest_cross%3E903642838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34447058&rft_id=info:pmid/&rft_els_id=S0360544208003265&rfr_iscdi=true