Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area
The paper deals with the motion planning problem for a rolling sphere with limited contact area. The system under consideration is represented by a hemispherical object that can roll without slipping or spinning on the plane. Under the constraints imposed on the size of the contact area, the constru...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2008-06, Vol.24 (3), p.612-625 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 625 |
---|---|
container_issue | 3 |
container_start_page | 612 |
container_title | IEEE transactions on robotics |
container_volume | 24 |
creator | Svinin, M. Hosoe, S. |
description | The paper deals with the motion planning problem for a rolling sphere with limited contact area. The system under consideration is represented by a hemispherical object that can roll without slipping or spinning on the plane. Under the constraints imposed on the size of the contact area, the construction of motion can be regarded as a problem of parallel parking in a finite number of movement steps. A motion strategy, realizing the movement steps by tracing generalized figure eights on the hemisphere, is introduced. Two different algorithms for this motion strategy, the circle-based and the generalized Viviani-curve-based ones, are proposed. The convergence of the algorithms is analyzed, and the computational feasibility of these algorithms is verified under simulation. |
doi_str_mv | 10.1109/TRO.2008.921568 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903642079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4505423</ieee_id><sourcerecordid>34436537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-d7598a8aa23bc9e8eb2e47625275b23d9629ae5a0a0bbc764ffaa98601c29d123</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxVcVSISPM4derEq0pw3jr137GEW0IAWBIIijNet4wWizDvbm0P8eh0Q59FBOM9L7vZHevKI4pzCmFPTl_OFuzADUWDMqK_WtGFEtaAmiUgd5l5KVHLQ6Ko5TegNgQgMfFTe3YfChJ_cd9r3vX8ikewnRD6_LRNoQCZKH0HUb4XH16qIjz1kjM7_0g1uQaegHtAOZRIenxWGLXXJnu3lSPP2-mk-vy9ndn5vpZFZaQflQLmqpFSpExhurnXINc6KumGS1bBhf6IppdBIBoWlsXYm2RdSqAmqZXlDGT4pf27urGN7XLg1m6ZN1XQ7gwjqZHKsSDGr9JamU5opmNpM__0tyIXgleZ3BH_-Ab2Ed-5zXMNi8XVKaocstZGNIKbrWrKJfYvxrKJhNVyZ3ZTZdmW1X2XGxO4vJYtdG7K1PexsDIZT65L5vOe-c28tCghSM8w9zXZpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201568511</pqid></control><display><type>article</type><title>Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area</title><source>IEEE Electronic Library (IEL)</source><creator>Svinin, M. ; Hosoe, S.</creator><creatorcontrib>Svinin, M. ; Hosoe, S.</creatorcontrib><description>The paper deals with the motion planning problem for a rolling sphere with limited contact area. The system under consideration is represented by a hemispherical object that can roll without slipping or spinning on the plane. Under the constraints imposed on the size of the contact area, the construction of motion can be regarded as a problem of parallel parking in a finite number of movement steps. A motion strategy, realizing the movement steps by tracing generalized figure eights on the hemisphere, is introduced. Two different algorithms for this motion strategy, the circle-based and the generalized Viviani-curve-based ones, are proposed. The convergence of the algorithms is analyzed, and the computational feasibility of these algorithms is verified under simulation.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2008.921568</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Analytical models ; Applied sciences ; Automation ; Computational modeling ; Computer science; control theory; systems ; Contact ; Control systems ; Control theory. Systems ; Convergence ; Exact sciences and technology ; Feasibility studies ; Hemispheres ; Kinematics ; Mathematical analysis ; Motion planning ; Movement ; nonholonomic systems ; Nonlinear equations ; optimality ; Robotics ; Robots ; rolling constraints ; Spinning ; Strategy ; Vision systems</subject><ispartof>IEEE transactions on robotics, 2008-06, Vol.24 (3), p.612-625</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-d7598a8aa23bc9e8eb2e47625275b23d9629ae5a0a0bbc764ffaa98601c29d123</citedby><cites>FETCH-LOGICAL-c413t-d7598a8aa23bc9e8eb2e47625275b23d9629ae5a0a0bbc764ffaa98601c29d123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4505423$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4505423$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20448868$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Svinin, M.</creatorcontrib><creatorcontrib>Hosoe, S.</creatorcontrib><title>Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>The paper deals with the motion planning problem for a rolling sphere with limited contact area. The system under consideration is represented by a hemispherical object that can roll without slipping or spinning on the plane. Under the constraints imposed on the size of the contact area, the construction of motion can be regarded as a problem of parallel parking in a finite number of movement steps. A motion strategy, realizing the movement steps by tracing generalized figure eights on the hemisphere, is introduced. Two different algorithms for this motion strategy, the circle-based and the generalized Viviani-curve-based ones, are proposed. The convergence of the algorithms is analyzed, and the computational feasibility of these algorithms is verified under simulation.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Applied sciences</subject><subject>Automation</subject><subject>Computational modeling</subject><subject>Computer science; control theory; systems</subject><subject>Contact</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Feasibility studies</subject><subject>Hemispheres</subject><subject>Kinematics</subject><subject>Mathematical analysis</subject><subject>Motion planning</subject><subject>Movement</subject><subject>nonholonomic systems</subject><subject>Nonlinear equations</subject><subject>optimality</subject><subject>Robotics</subject><subject>Robots</subject><subject>rolling constraints</subject><subject>Spinning</subject><subject>Strategy</subject><subject>Vision systems</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1PGzEQxVcVSISPM4derEq0pw3jr137GEW0IAWBIIijNet4wWizDvbm0P8eh0Q59FBOM9L7vZHevKI4pzCmFPTl_OFuzADUWDMqK_WtGFEtaAmiUgd5l5KVHLQ6Ko5TegNgQgMfFTe3YfChJ_cd9r3vX8ikewnRD6_LRNoQCZKH0HUb4XH16qIjz1kjM7_0g1uQaegHtAOZRIenxWGLXXJnu3lSPP2-mk-vy9ndn5vpZFZaQflQLmqpFSpExhurnXINc6KumGS1bBhf6IppdBIBoWlsXYm2RdSqAmqZXlDGT4pf27urGN7XLg1m6ZN1XQ7gwjqZHKsSDGr9JamU5opmNpM__0tyIXgleZ3BH_-Ab2Ed-5zXMNi8XVKaocstZGNIKbrWrKJfYvxrKJhNVyZ3ZTZdmW1X2XGxO4vJYtdG7K1PexsDIZT65L5vOe-c28tCghSM8w9zXZpU</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Svinin, M.</creator><creator>Hosoe, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20080601</creationdate><title>Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area</title><author>Svinin, M. ; Hosoe, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-d7598a8aa23bc9e8eb2e47625275b23d9629ae5a0a0bbc764ffaa98601c29d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Applied sciences</topic><topic>Automation</topic><topic>Computational modeling</topic><topic>Computer science; control theory; systems</topic><topic>Contact</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Feasibility studies</topic><topic>Hemispheres</topic><topic>Kinematics</topic><topic>Mathematical analysis</topic><topic>Motion planning</topic><topic>Movement</topic><topic>nonholonomic systems</topic><topic>Nonlinear equations</topic><topic>optimality</topic><topic>Robotics</topic><topic>Robots</topic><topic>rolling constraints</topic><topic>Spinning</topic><topic>Strategy</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svinin, M.</creatorcontrib><creatorcontrib>Hosoe, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Svinin, M.</au><au>Hosoe, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>24</volume><issue>3</issue><spage>612</spage><epage>625</epage><pages>612-625</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>The paper deals with the motion planning problem for a rolling sphere with limited contact area. The system under consideration is represented by a hemispherical object that can roll without slipping or spinning on the plane. Under the constraints imposed on the size of the contact area, the construction of motion can be regarded as a problem of parallel parking in a finite number of movement steps. A motion strategy, realizing the movement steps by tracing generalized figure eights on the hemisphere, is introduced. Two different algorithms for this motion strategy, the circle-based and the generalized Viviani-curve-based ones, are proposed. The convergence of the algorithms is analyzed, and the computational feasibility of these algorithms is verified under simulation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2008.921568</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2008-06, Vol.24 (3), p.612-625 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_miscellaneous_903642079 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Analytical models Applied sciences Automation Computational modeling Computer science control theory systems Contact Control systems Control theory. Systems Convergence Exact sciences and technology Feasibility studies Hemispheres Kinematics Mathematical analysis Motion planning Movement nonholonomic systems Nonlinear equations optimality Robotics Robots rolling constraints Spinning Strategy Vision systems |
title | Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20Planning%20Algorithms%20for%20a%20Rolling%20Sphere%20With%20Limited%20Contact%20Area&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Svinin,%20M.&rft.date=2008-06-01&rft.volume=24&rft.issue=3&rft.spage=612&rft.epage=625&rft.pages=612-625&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2008.921568&rft_dat=%3Cproquest_RIE%3E34436537%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201568511&rft_id=info:pmid/&rft_ieee_id=4505423&rfr_iscdi=true |