Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area

The paper deals with the motion planning problem for a rolling sphere with limited contact area. The system under consideration is represented by a hemispherical object that can roll without slipping or spinning on the plane. Under the constraints imposed on the size of the contact area, the constru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2008-06, Vol.24 (3), p.612-625
Hauptverfasser: Svinin, M., Hosoe, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue 3
container_start_page 612
container_title IEEE transactions on robotics
container_volume 24
creator Svinin, M.
Hosoe, S.
description The paper deals with the motion planning problem for a rolling sphere with limited contact area. The system under consideration is represented by a hemispherical object that can roll without slipping or spinning on the plane. Under the constraints imposed on the size of the contact area, the construction of motion can be regarded as a problem of parallel parking in a finite number of movement steps. A motion strategy, realizing the movement steps by tracing generalized figure eights on the hemisphere, is introduced. Two different algorithms for this motion strategy, the circle-based and the generalized Viviani-curve-based ones, are proposed. The convergence of the algorithms is analyzed, and the computational feasibility of these algorithms is verified under simulation.
doi_str_mv 10.1109/TRO.2008.921568
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903642079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4505423</ieee_id><sourcerecordid>34436537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-d7598a8aa23bc9e8eb2e47625275b23d9629ae5a0a0bbc764ffaa98601c29d123</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxVcVSISPM4derEq0pw3jr137GEW0IAWBIIijNet4wWizDvbm0P8eh0Q59FBOM9L7vZHevKI4pzCmFPTl_OFuzADUWDMqK_WtGFEtaAmiUgd5l5KVHLQ6Ko5TegNgQgMfFTe3YfChJ_cd9r3vX8ikewnRD6_LRNoQCZKH0HUb4XH16qIjz1kjM7_0g1uQaegHtAOZRIenxWGLXXJnu3lSPP2-mk-vy9ndn5vpZFZaQflQLmqpFSpExhurnXINc6KumGS1bBhf6IppdBIBoWlsXYm2RdSqAmqZXlDGT4pf27urGN7XLg1m6ZN1XQ7gwjqZHKsSDGr9JamU5opmNpM__0tyIXgleZ3BH_-Ab2Ed-5zXMNi8XVKaocstZGNIKbrWrKJfYvxrKJhNVyZ3ZTZdmW1X2XGxO4vJYtdG7K1PexsDIZT65L5vOe-c28tCghSM8w9zXZpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201568511</pqid></control><display><type>article</type><title>Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area</title><source>IEEE Electronic Library (IEL)</source><creator>Svinin, M. ; Hosoe, S.</creator><creatorcontrib>Svinin, M. ; Hosoe, S.</creatorcontrib><description>The paper deals with the motion planning problem for a rolling sphere with limited contact area. The system under consideration is represented by a hemispherical object that can roll without slipping or spinning on the plane. Under the constraints imposed on the size of the contact area, the construction of motion can be regarded as a problem of parallel parking in a finite number of movement steps. A motion strategy, realizing the movement steps by tracing generalized figure eights on the hemisphere, is introduced. Two different algorithms for this motion strategy, the circle-based and the generalized Viviani-curve-based ones, are proposed. The convergence of the algorithms is analyzed, and the computational feasibility of these algorithms is verified under simulation.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2008.921568</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Analytical models ; Applied sciences ; Automation ; Computational modeling ; Computer science; control theory; systems ; Contact ; Control systems ; Control theory. Systems ; Convergence ; Exact sciences and technology ; Feasibility studies ; Hemispheres ; Kinematics ; Mathematical analysis ; Motion planning ; Movement ; nonholonomic systems ; Nonlinear equations ; optimality ; Robotics ; Robots ; rolling constraints ; Spinning ; Strategy ; Vision systems</subject><ispartof>IEEE transactions on robotics, 2008-06, Vol.24 (3), p.612-625</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-d7598a8aa23bc9e8eb2e47625275b23d9629ae5a0a0bbc764ffaa98601c29d123</citedby><cites>FETCH-LOGICAL-c413t-d7598a8aa23bc9e8eb2e47625275b23d9629ae5a0a0bbc764ffaa98601c29d123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4505423$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4505423$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20448868$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Svinin, M.</creatorcontrib><creatorcontrib>Hosoe, S.</creatorcontrib><title>Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>The paper deals with the motion planning problem for a rolling sphere with limited contact area. The system under consideration is represented by a hemispherical object that can roll without slipping or spinning on the plane. Under the constraints imposed on the size of the contact area, the construction of motion can be regarded as a problem of parallel parking in a finite number of movement steps. A motion strategy, realizing the movement steps by tracing generalized figure eights on the hemisphere, is introduced. Two different algorithms for this motion strategy, the circle-based and the generalized Viviani-curve-based ones, are proposed. The convergence of the algorithms is analyzed, and the computational feasibility of these algorithms is verified under simulation.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Applied sciences</subject><subject>Automation</subject><subject>Computational modeling</subject><subject>Computer science; control theory; systems</subject><subject>Contact</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Feasibility studies</subject><subject>Hemispheres</subject><subject>Kinematics</subject><subject>Mathematical analysis</subject><subject>Motion planning</subject><subject>Movement</subject><subject>nonholonomic systems</subject><subject>Nonlinear equations</subject><subject>optimality</subject><subject>Robotics</subject><subject>Robots</subject><subject>rolling constraints</subject><subject>Spinning</subject><subject>Strategy</subject><subject>Vision systems</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1PGzEQxVcVSISPM4derEq0pw3jr137GEW0IAWBIIijNet4wWizDvbm0P8eh0Q59FBOM9L7vZHevKI4pzCmFPTl_OFuzADUWDMqK_WtGFEtaAmiUgd5l5KVHLQ6Ko5TegNgQgMfFTe3YfChJ_cd9r3vX8ikewnRD6_LRNoQCZKH0HUb4XH16qIjz1kjM7_0g1uQaegHtAOZRIenxWGLXXJnu3lSPP2-mk-vy9ndn5vpZFZaQflQLmqpFSpExhurnXINc6KumGS1bBhf6IppdBIBoWlsXYm2RdSqAmqZXlDGT4pf27urGN7XLg1m6ZN1XQ7gwjqZHKsSDGr9JamU5opmNpM__0tyIXgleZ3BH_-Ab2Ed-5zXMNi8XVKaocstZGNIKbrWrKJfYvxrKJhNVyZ3ZTZdmW1X2XGxO4vJYtdG7K1PexsDIZT65L5vOe-c28tCghSM8w9zXZpU</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Svinin, M.</creator><creator>Hosoe, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20080601</creationdate><title>Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area</title><author>Svinin, M. ; Hosoe, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-d7598a8aa23bc9e8eb2e47625275b23d9629ae5a0a0bbc764ffaa98601c29d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Applied sciences</topic><topic>Automation</topic><topic>Computational modeling</topic><topic>Computer science; control theory; systems</topic><topic>Contact</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Feasibility studies</topic><topic>Hemispheres</topic><topic>Kinematics</topic><topic>Mathematical analysis</topic><topic>Motion planning</topic><topic>Movement</topic><topic>nonholonomic systems</topic><topic>Nonlinear equations</topic><topic>optimality</topic><topic>Robotics</topic><topic>Robots</topic><topic>rolling constraints</topic><topic>Spinning</topic><topic>Strategy</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svinin, M.</creatorcontrib><creatorcontrib>Hosoe, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Svinin, M.</au><au>Hosoe, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>24</volume><issue>3</issue><spage>612</spage><epage>625</epage><pages>612-625</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>The paper deals with the motion planning problem for a rolling sphere with limited contact area. The system under consideration is represented by a hemispherical object that can roll without slipping or spinning on the plane. Under the constraints imposed on the size of the contact area, the construction of motion can be regarded as a problem of parallel parking in a finite number of movement steps. A motion strategy, realizing the movement steps by tracing generalized figure eights on the hemisphere, is introduced. Two different algorithms for this motion strategy, the circle-based and the generalized Viviani-curve-based ones, are proposed. The convergence of the algorithms is analyzed, and the computational feasibility of these algorithms is verified under simulation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2008.921568</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2008-06, Vol.24 (3), p.612-625
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_miscellaneous_903642079
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Analytical models
Applied sciences
Automation
Computational modeling
Computer science
control theory
systems
Contact
Control systems
Control theory. Systems
Convergence
Exact sciences and technology
Feasibility studies
Hemispheres
Kinematics
Mathematical analysis
Motion planning
Movement
nonholonomic systems
Nonlinear equations
optimality
Robotics
Robots
rolling constraints
Spinning
Strategy
Vision systems
title Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20Planning%20Algorithms%20for%20a%20Rolling%20Sphere%20With%20Limited%20Contact%20Area&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Svinin,%20M.&rft.date=2008-06-01&rft.volume=24&rft.issue=3&rft.spage=612&rft.epage=625&rft.pages=612-625&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2008.921568&rft_dat=%3Cproquest_RIE%3E34436537%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201568511&rft_id=info:pmid/&rft_ieee_id=4505423&rfr_iscdi=true