Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization

In this paper, we showed that the maximum active P concentration of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} exists during solid-phase epitaxial recrystallization (SPER). This maximum active concentration is close to the reported values for other active impurity concentrations du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2007-08, Vol.54 (8), p.1985-1993
Hauptverfasser: Suzuki, Kunihiro, Tada, Yoko, Kataoka, Yuji, Kawamura, Kazuo, Nagayama, Tsutomu, Nagayama, Susumu, Magee, Charles W., Buyuklimanli, Temel H., Mueller, Dominik Christoph, Fichtner, Wolfgang, Zechner, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1993
container_issue 8
container_start_page 1985
container_title IEEE transactions on electron devices
container_volume 54
creator Suzuki, Kunihiro
Tada, Yoko
Kataoka, Yuji
Kawamura, Kazuo
Nagayama, Tsutomu
Nagayama, Susumu
Magee, Charles W.
Buyuklimanli, Temel H.
Mueller, Dominik Christoph
Fichtner, Wolfgang
Zechner, Christoph
description In this paper, we showed that the maximum active P concentration of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} exists during solid-phase epitaxial recrystallization (SPER). This maximum active concentration is close to the reported values for other active impurity concentrations during SPER. We introduced the concept of an isolated impurity that has no neighbor impurities with a certain lattice range. Assuming that impurities interact with three or four neighbor impurities, we can explain the activation phenomenon during SPER. According to our model, the isolated P concentration N_{\rm iso} has a maximum value of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} at a total impurity concentration of approximately \hbox{10}^{21}\ \hbox{cm}^{-3} , and it decreases with a further increase in total impurity concentration. Deactivation occurs after the completion of SPER with increasing annealing time, and the active impurity concentration decreases with time but is always higher than the maximum diffusion concentration N_{{\rm Diff}\max} . We also observed that N_{{\rm Diff}\max} is independent of the annealing time despite nonthermal activation in the high-concentration region. We evaluated the dependence of N_{{\rm Diff}\max} on annealing temperatures. We think that this N_{{\rm Diff}\max} can be regarded as the electrical solid solubility N_{\rm Esol} that the
doi_str_mv 10.1109/TED.2007.901157
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903641913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4277982</ieee_id><sourcerecordid>880670674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-3f24b918e1b4ca331b783c57cc2da21b5e25c95430c8f01d08da4e233e75b2d23</originalsourceid><addsrcrecordid>eNqFkUFrFDEYhoMouK6ePXgJgvY02yRfMkmOZbvVhUpLrechk8l0U2YmYzIjbX-92W5R8GAhEEKe7-HlexF6T8mKUqKPrzenK0aIXGlCqZAv0IIKIQtd8vIlWhBCVaFBwWv0JqXb_Cw5Zwt0883c-X7u8Ymd_C-H12GwbpiimXwYcGjxNgzFth87M0yuwZe7kMZdiHPCp3P0ww3-HjrfFJc7kxzejH7KOtPhK2fjfZpM1_mHR9Vb9Ko1XXLvnu4l-nG2uV5_Lc4vvmzXJ-eF5ZxPBbSM15oqR2tuDQCtpQIrpLWsMYzWwjFhteBArGoJbYhqDHcMwElRs4bBEh0dvGMMP2eXpqr3ybou53dhTpUmUHKqKTxLKkVKmQ_P5Of_ksA5wD7UcyAjJRCRIyzRx3_A2zDHIS-mUiVIrQUtM3R8gGwMKUXXVmP0vYn3FSXVvvIqV17tK68OleeJT09ak6zp2mgG69PfMZW9_DHnhwPnnXN_vjmTUisGvwFVG7O-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863799516</pqid></control><display><type>article</type><title>Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization</title><source>IEEE Electronic Library (IEL)</source><creator>Suzuki, Kunihiro ; Tada, Yoko ; Kataoka, Yuji ; Kawamura, Kazuo ; Nagayama, Tsutomu ; Nagayama, Susumu ; Magee, Charles W. ; Buyuklimanli, Temel H. ; Mueller, Dominik Christoph ; Fichtner, Wolfgang ; Zechner, Christoph</creator><creatorcontrib>Suzuki, Kunihiro ; Tada, Yoko ; Kataoka, Yuji ; Kawamura, Kazuo ; Nagayama, Tsutomu ; Nagayama, Susumu ; Magee, Charles W. ; Buyuklimanli, Temel H. ; Mueller, Dominik Christoph ; Fichtner, Wolfgang ; Zechner, Christoph</creatorcontrib><description>In this paper, we showed that the maximum active P concentration of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} exists during solid-phase epitaxial recrystallization (SPER). This maximum active concentration is close to the reported values for other active impurity concentrations during SPER. We introduced the concept of an isolated impurity that has no neighbor impurities with a certain lattice range. Assuming that impurities interact with three or four neighbor impurities, we can explain the activation phenomenon during SPER. According to our model, the isolated P concentration N_{\rm iso} has a maximum value of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} at a total impurity concentration of approximately \hbox{10}^{21}\ \hbox{cm}^{-3} , and it decreases with a further increase in total impurity concentration. Deactivation occurs after the completion of SPER with increasing annealing time, and the active impurity concentration decreases with time but is always higher than the maximum diffusion concentration N_{{\rm Diff}\max} . We also observed that N_{{\rm Diff}\max} is independent of the annealing time despite nonthermal activation in the high-concentration region. We evaluated the dependence of N_{{\rm Diff}\max} on annealing temperatures. We think that this N_{{\rm Diff}\max} can be regarded as the electrical solid solubility N_{\rm Esol} that the</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2007.901157</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Activation ; Annealing ; Applied sciences ; Deactivation ; Diffusion coefficient ; Electronics ; Epitaxial growth ; Epitaxy ; Exact sciences and technology ; Impurities ; ion implantation ; Metallurgy ; Microelectronic fabrication (materials and surfaces technology) ; Microwave and submillimeter wave devices, electron transfer devices ; phosphorus ; Point defects ; Recrystallization ; Resistance ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid solubility ; solid-phase epitaxy ; Solids ; Strontium ; Temperature measurement</subject><ispartof>IEEE transactions on electron devices, 2007-08, Vol.54 (8), p.1985-1993</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-3f24b918e1b4ca331b783c57cc2da21b5e25c95430c8f01d08da4e233e75b2d23</citedby><cites>FETCH-LOGICAL-c444t-3f24b918e1b4ca331b783c57cc2da21b5e25c95430c8f01d08da4e233e75b2d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4277982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4277982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18951454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Kunihiro</creatorcontrib><creatorcontrib>Tada, Yoko</creatorcontrib><creatorcontrib>Kataoka, Yuji</creatorcontrib><creatorcontrib>Kawamura, Kazuo</creatorcontrib><creatorcontrib>Nagayama, Tsutomu</creatorcontrib><creatorcontrib>Nagayama, Susumu</creatorcontrib><creatorcontrib>Magee, Charles W.</creatorcontrib><creatorcontrib>Buyuklimanli, Temel H.</creatorcontrib><creatorcontrib>Mueller, Dominik Christoph</creatorcontrib><creatorcontrib>Fichtner, Wolfgang</creatorcontrib><creatorcontrib>Zechner, Christoph</creatorcontrib><title>Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, we showed that the maximum active P concentration of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} exists during solid-phase epitaxial recrystallization (SPER). This maximum active concentration is close to the reported values for other active impurity concentrations during SPER. We introduced the concept of an isolated impurity that has no neighbor impurities with a certain lattice range. Assuming that impurities interact with three or four neighbor impurities, we can explain the activation phenomenon during SPER. According to our model, the isolated P concentration N_{\rm iso} has a maximum value of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} at a total impurity concentration of approximately \hbox{10}^{21}\ \hbox{cm}^{-3} , and it decreases with a further increase in total impurity concentration. Deactivation occurs after the completion of SPER with increasing annealing time, and the active impurity concentration decreases with time but is always higher than the maximum diffusion concentration N_{{\rm Diff}\max} . We also observed that N_{{\rm Diff}\max} is independent of the annealing time despite nonthermal activation in the high-concentration region. We evaluated the dependence of N_{{\rm Diff}\max} on annealing temperatures. We think that this N_{{\rm Diff}\max} can be regarded as the electrical solid solubility N_{\rm Esol} that the</description><subject>Activation</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Deactivation</subject><subject>Diffusion coefficient</subject><subject>Electronics</subject><subject>Epitaxial growth</subject><subject>Epitaxy</subject><subject>Exact sciences and technology</subject><subject>Impurities</subject><subject>ion implantation</subject><subject>Metallurgy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Microwave and submillimeter wave devices, electron transfer devices</subject><subject>phosphorus</subject><subject>Point defects</subject><subject>Recrystallization</subject><subject>Resistance</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid solubility</subject><subject>solid-phase epitaxy</subject><subject>Solids</subject><subject>Strontium</subject><subject>Temperature measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFrFDEYhoMouK6ePXgJgvY02yRfMkmOZbvVhUpLrechk8l0U2YmYzIjbX-92W5R8GAhEEKe7-HlexF6T8mKUqKPrzenK0aIXGlCqZAv0IIKIQtd8vIlWhBCVaFBwWv0JqXb_Cw5Zwt0883c-X7u8Ymd_C-H12GwbpiimXwYcGjxNgzFth87M0yuwZe7kMZdiHPCp3P0ww3-HjrfFJc7kxzejH7KOtPhK2fjfZpM1_mHR9Vb9Ko1XXLvnu4l-nG2uV5_Lc4vvmzXJ-eF5ZxPBbSM15oqR2tuDQCtpQIrpLWsMYzWwjFhteBArGoJbYhqDHcMwElRs4bBEh0dvGMMP2eXpqr3ybou53dhTpUmUHKqKTxLKkVKmQ_P5Of_ksA5wD7UcyAjJRCRIyzRx3_A2zDHIS-mUiVIrQUtM3R8gGwMKUXXVmP0vYn3FSXVvvIqV17tK68OleeJT09ak6zp2mgG69PfMZW9_DHnhwPnnXN_vjmTUisGvwFVG7O-</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Suzuki, Kunihiro</creator><creator>Tada, Yoko</creator><creator>Kataoka, Yuji</creator><creator>Kawamura, Kazuo</creator><creator>Nagayama, Tsutomu</creator><creator>Nagayama, Susumu</creator><creator>Magee, Charles W.</creator><creator>Buyuklimanli, Temel H.</creator><creator>Mueller, Dominik Christoph</creator><creator>Fichtner, Wolfgang</creator><creator>Zechner, Christoph</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>20070801</creationdate><title>Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization</title><author>Suzuki, Kunihiro ; Tada, Yoko ; Kataoka, Yuji ; Kawamura, Kazuo ; Nagayama, Tsutomu ; Nagayama, Susumu ; Magee, Charles W. ; Buyuklimanli, Temel H. ; Mueller, Dominik Christoph ; Fichtner, Wolfgang ; Zechner, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-3f24b918e1b4ca331b783c57cc2da21b5e25c95430c8f01d08da4e233e75b2d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Activation</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Deactivation</topic><topic>Diffusion coefficient</topic><topic>Electronics</topic><topic>Epitaxial growth</topic><topic>Epitaxy</topic><topic>Exact sciences and technology</topic><topic>Impurities</topic><topic>ion implantation</topic><topic>Metallurgy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Microwave and submillimeter wave devices, electron transfer devices</topic><topic>phosphorus</topic><topic>Point defects</topic><topic>Recrystallization</topic><topic>Resistance</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid solubility</topic><topic>solid-phase epitaxy</topic><topic>Solids</topic><topic>Strontium</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Kunihiro</creatorcontrib><creatorcontrib>Tada, Yoko</creatorcontrib><creatorcontrib>Kataoka, Yuji</creatorcontrib><creatorcontrib>Kawamura, Kazuo</creatorcontrib><creatorcontrib>Nagayama, Tsutomu</creatorcontrib><creatorcontrib>Nagayama, Susumu</creatorcontrib><creatorcontrib>Magee, Charles W.</creatorcontrib><creatorcontrib>Buyuklimanli, Temel H.</creatorcontrib><creatorcontrib>Mueller, Dominik Christoph</creatorcontrib><creatorcontrib>Fichtner, Wolfgang</creatorcontrib><creatorcontrib>Zechner, Christoph</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suzuki, Kunihiro</au><au>Tada, Yoko</au><au>Kataoka, Yuji</au><au>Kawamura, Kazuo</au><au>Nagayama, Tsutomu</au><au>Nagayama, Susumu</au><au>Magee, Charles W.</au><au>Buyuklimanli, Temel H.</au><au>Mueller, Dominik Christoph</au><au>Fichtner, Wolfgang</au><au>Zechner, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2007-08-01</date><risdate>2007</risdate><volume>54</volume><issue>8</issue><spage>1985</spage><epage>1993</epage><pages>1985-1993</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, we showed that the maximum active P concentration of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} exists during solid-phase epitaxial recrystallization (SPER). This maximum active concentration is close to the reported values for other active impurity concentrations during SPER. We introduced the concept of an isolated impurity that has no neighbor impurities with a certain lattice range. Assuming that impurities interact with three or four neighbor impurities, we can explain the activation phenomenon during SPER. According to our model, the isolated P concentration N_{\rm iso} has a maximum value of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} at a total impurity concentration of approximately \hbox{10}^{21}\ \hbox{cm}^{-3} , and it decreases with a further increase in total impurity concentration. Deactivation occurs after the completion of SPER with increasing annealing time, and the active impurity concentration decreases with time but is always higher than the maximum diffusion concentration N_{{\rm Diff}\max} . We also observed that N_{{\rm Diff}\max} is independent of the annealing time despite nonthermal activation in the high-concentration region. We evaluated the dependence of N_{{\rm Diff}\max} on annealing temperatures. We think that this N_{{\rm Diff}\max} can be regarded as the electrical solid solubility N_{\rm Esol} that the</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2007.901157</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2007-08, Vol.54 (8), p.1985-1993
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_903641913
source IEEE Electronic Library (IEL)
subjects Activation
Annealing
Applied sciences
Deactivation
Diffusion coefficient
Electronics
Epitaxial growth
Epitaxy
Exact sciences and technology
Impurities
ion implantation
Metallurgy
Microelectronic fabrication (materials and surfaces technology)
Microwave and submillimeter wave devices, electron transfer devices
phosphorus
Point defects
Recrystallization
Resistance
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solid solubility
solid-phase epitaxy
Solids
Strontium
Temperature measurement
title Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Active%20Concentration%20of%20Ion-Implanted%20Phosphorus%20During%20Solid-Phase%20Epitaxial%20Recrystallization&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Suzuki,%20Kunihiro&rft.date=2007-08-01&rft.volume=54&rft.issue=8&rft.spage=1985&rft.epage=1993&rft.pages=1985-1993&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2007.901157&rft_dat=%3Cproquest_RIE%3E880670674%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863799516&rft_id=info:pmid/&rft_ieee_id=4277982&rfr_iscdi=true