Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization
In this paper, we showed that the maximum active P concentration of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} exists during solid-phase epitaxial recrystallization (SPER). This maximum active concentration is close to the reported values for other active impurity concentrations du...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2007-08, Vol.54 (8), p.1985-1993 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1993 |
---|---|
container_issue | 8 |
container_start_page | 1985 |
container_title | IEEE transactions on electron devices |
container_volume | 54 |
creator | Suzuki, Kunihiro Tada, Yoko Kataoka, Yuji Kawamura, Kazuo Nagayama, Tsutomu Nagayama, Susumu Magee, Charles W. Buyuklimanli, Temel H. Mueller, Dominik Christoph Fichtner, Wolfgang Zechner, Christoph |
description | In this paper, we showed that the maximum active P concentration of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} exists during solid-phase epitaxial recrystallization (SPER). This maximum active concentration is close to the reported values for other active impurity concentrations during SPER. We introduced the concept of an isolated impurity that has no neighbor impurities with a certain lattice range. Assuming that impurities interact with three or four neighbor impurities, we can explain the activation phenomenon during SPER. According to our model, the isolated P concentration N_{\rm iso} has a maximum value of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} at a total impurity concentration of approximately \hbox{10}^{21}\ \hbox{cm}^{-3} , and it decreases with a further increase in total impurity concentration. Deactivation occurs after the completion of SPER with increasing annealing time, and the active impurity concentration decreases with time but is always higher than the maximum diffusion concentration N_{{\rm Diff}\max} . We also observed that N_{{\rm Diff}\max} is independent of the annealing time despite nonthermal activation in the high-concentration region. We evaluated the dependence of N_{{\rm Diff}\max} on annealing temperatures. We think that this N_{{\rm Diff}\max} can be regarded as the electrical solid solubility N_{\rm Esol} that the |
doi_str_mv | 10.1109/TED.2007.901157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903641913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4277982</ieee_id><sourcerecordid>880670674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-3f24b918e1b4ca331b783c57cc2da21b5e25c95430c8f01d08da4e233e75b2d23</originalsourceid><addsrcrecordid>eNqFkUFrFDEYhoMouK6ePXgJgvY02yRfMkmOZbvVhUpLrechk8l0U2YmYzIjbX-92W5R8GAhEEKe7-HlexF6T8mKUqKPrzenK0aIXGlCqZAv0IIKIQtd8vIlWhBCVaFBwWv0JqXb_Cw5Zwt0883c-X7u8Ymd_C-H12GwbpiimXwYcGjxNgzFth87M0yuwZe7kMZdiHPCp3P0ww3-HjrfFJc7kxzejH7KOtPhK2fjfZpM1_mHR9Vb9Ko1XXLvnu4l-nG2uV5_Lc4vvmzXJ-eF5ZxPBbSM15oqR2tuDQCtpQIrpLWsMYzWwjFhteBArGoJbYhqDHcMwElRs4bBEh0dvGMMP2eXpqr3ybou53dhTpUmUHKqKTxLKkVKmQ_P5Of_ksA5wD7UcyAjJRCRIyzRx3_A2zDHIS-mUiVIrQUtM3R8gGwMKUXXVmP0vYn3FSXVvvIqV17tK68OleeJT09ak6zp2mgG69PfMZW9_DHnhwPnnXN_vjmTUisGvwFVG7O-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863799516</pqid></control><display><type>article</type><title>Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization</title><source>IEEE Electronic Library (IEL)</source><creator>Suzuki, Kunihiro ; Tada, Yoko ; Kataoka, Yuji ; Kawamura, Kazuo ; Nagayama, Tsutomu ; Nagayama, Susumu ; Magee, Charles W. ; Buyuklimanli, Temel H. ; Mueller, Dominik Christoph ; Fichtner, Wolfgang ; Zechner, Christoph</creator><creatorcontrib>Suzuki, Kunihiro ; Tada, Yoko ; Kataoka, Yuji ; Kawamura, Kazuo ; Nagayama, Tsutomu ; Nagayama, Susumu ; Magee, Charles W. ; Buyuklimanli, Temel H. ; Mueller, Dominik Christoph ; Fichtner, Wolfgang ; Zechner, Christoph</creatorcontrib><description>In this paper, we showed that the maximum active P concentration of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} exists during solid-phase epitaxial recrystallization (SPER). This maximum active concentration is close to the reported values for other active impurity concentrations during SPER. We introduced the concept of an isolated impurity that has no neighbor impurities with a certain lattice range. Assuming that impurities interact with three or four neighbor impurities, we can explain the activation phenomenon during SPER. According to our model, the isolated P concentration N_{\rm iso} has a maximum value of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} at a total impurity concentration of approximately \hbox{10}^{21}\ \hbox{cm}^{-3} , and it decreases with a further increase in total impurity concentration. Deactivation occurs after the completion of SPER with increasing annealing time, and the active impurity concentration decreases with time but is always higher than the maximum diffusion concentration N_{{\rm Diff}\max} . We also observed that N_{{\rm Diff}\max} is independent of the annealing time despite nonthermal activation in the high-concentration region. We evaluated the dependence of N_{{\rm Diff}\max} on annealing temperatures. We think that this N_{{\rm Diff}\max} can be regarded as the electrical solid solubility N_{\rm Esol} that the</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2007.901157</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Activation ; Annealing ; Applied sciences ; Deactivation ; Diffusion coefficient ; Electronics ; Epitaxial growth ; Epitaxy ; Exact sciences and technology ; Impurities ; ion implantation ; Metallurgy ; Microelectronic fabrication (materials and surfaces technology) ; Microwave and submillimeter wave devices, electron transfer devices ; phosphorus ; Point defects ; Recrystallization ; Resistance ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid solubility ; solid-phase epitaxy ; Solids ; Strontium ; Temperature measurement</subject><ispartof>IEEE transactions on electron devices, 2007-08, Vol.54 (8), p.1985-1993</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-3f24b918e1b4ca331b783c57cc2da21b5e25c95430c8f01d08da4e233e75b2d23</citedby><cites>FETCH-LOGICAL-c444t-3f24b918e1b4ca331b783c57cc2da21b5e25c95430c8f01d08da4e233e75b2d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4277982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4277982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18951454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Kunihiro</creatorcontrib><creatorcontrib>Tada, Yoko</creatorcontrib><creatorcontrib>Kataoka, Yuji</creatorcontrib><creatorcontrib>Kawamura, Kazuo</creatorcontrib><creatorcontrib>Nagayama, Tsutomu</creatorcontrib><creatorcontrib>Nagayama, Susumu</creatorcontrib><creatorcontrib>Magee, Charles W.</creatorcontrib><creatorcontrib>Buyuklimanli, Temel H.</creatorcontrib><creatorcontrib>Mueller, Dominik Christoph</creatorcontrib><creatorcontrib>Fichtner, Wolfgang</creatorcontrib><creatorcontrib>Zechner, Christoph</creatorcontrib><title>Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, we showed that the maximum active P concentration of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} exists during solid-phase epitaxial recrystallization (SPER). This maximum active concentration is close to the reported values for other active impurity concentrations during SPER. We introduced the concept of an isolated impurity that has no neighbor impurities with a certain lattice range. Assuming that impurities interact with three or four neighbor impurities, we can explain the activation phenomenon during SPER. According to our model, the isolated P concentration N_{\rm iso} has a maximum value of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} at a total impurity concentration of approximately \hbox{10}^{21}\ \hbox{cm}^{-3} , and it decreases with a further increase in total impurity concentration. Deactivation occurs after the completion of SPER with increasing annealing time, and the active impurity concentration decreases with time but is always higher than the maximum diffusion concentration N_{{\rm Diff}\max} . We also observed that N_{{\rm Diff}\max} is independent of the annealing time despite nonthermal activation in the high-concentration region. We evaluated the dependence of N_{{\rm Diff}\max} on annealing temperatures. We think that this N_{{\rm Diff}\max} can be regarded as the electrical solid solubility N_{\rm Esol} that the</description><subject>Activation</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Deactivation</subject><subject>Diffusion coefficient</subject><subject>Electronics</subject><subject>Epitaxial growth</subject><subject>Epitaxy</subject><subject>Exact sciences and technology</subject><subject>Impurities</subject><subject>ion implantation</subject><subject>Metallurgy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Microwave and submillimeter wave devices, electron transfer devices</subject><subject>phosphorus</subject><subject>Point defects</subject><subject>Recrystallization</subject><subject>Resistance</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid solubility</subject><subject>solid-phase epitaxy</subject><subject>Solids</subject><subject>Strontium</subject><subject>Temperature measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFrFDEYhoMouK6ePXgJgvY02yRfMkmOZbvVhUpLrechk8l0U2YmYzIjbX-92W5R8GAhEEKe7-HlexF6T8mKUqKPrzenK0aIXGlCqZAv0IIKIQtd8vIlWhBCVaFBwWv0JqXb_Cw5Zwt0883c-X7u8Ymd_C-H12GwbpiimXwYcGjxNgzFth87M0yuwZe7kMZdiHPCp3P0ww3-HjrfFJc7kxzejH7KOtPhK2fjfZpM1_mHR9Vb9Ko1XXLvnu4l-nG2uV5_Lc4vvmzXJ-eF5ZxPBbSM15oqR2tuDQCtpQIrpLWsMYzWwjFhteBArGoJbYhqDHcMwElRs4bBEh0dvGMMP2eXpqr3ybou53dhTpUmUHKqKTxLKkVKmQ_P5Of_ksA5wD7UcyAjJRCRIyzRx3_A2zDHIS-mUiVIrQUtM3R8gGwMKUXXVmP0vYn3FSXVvvIqV17tK68OleeJT09ak6zp2mgG69PfMZW9_DHnhwPnnXN_vjmTUisGvwFVG7O-</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Suzuki, Kunihiro</creator><creator>Tada, Yoko</creator><creator>Kataoka, Yuji</creator><creator>Kawamura, Kazuo</creator><creator>Nagayama, Tsutomu</creator><creator>Nagayama, Susumu</creator><creator>Magee, Charles W.</creator><creator>Buyuklimanli, Temel H.</creator><creator>Mueller, Dominik Christoph</creator><creator>Fichtner, Wolfgang</creator><creator>Zechner, Christoph</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>20070801</creationdate><title>Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization</title><author>Suzuki, Kunihiro ; Tada, Yoko ; Kataoka, Yuji ; Kawamura, Kazuo ; Nagayama, Tsutomu ; Nagayama, Susumu ; Magee, Charles W. ; Buyuklimanli, Temel H. ; Mueller, Dominik Christoph ; Fichtner, Wolfgang ; Zechner, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-3f24b918e1b4ca331b783c57cc2da21b5e25c95430c8f01d08da4e233e75b2d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Activation</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Deactivation</topic><topic>Diffusion coefficient</topic><topic>Electronics</topic><topic>Epitaxial growth</topic><topic>Epitaxy</topic><topic>Exact sciences and technology</topic><topic>Impurities</topic><topic>ion implantation</topic><topic>Metallurgy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Microwave and submillimeter wave devices, electron transfer devices</topic><topic>phosphorus</topic><topic>Point defects</topic><topic>Recrystallization</topic><topic>Resistance</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid solubility</topic><topic>solid-phase epitaxy</topic><topic>Solids</topic><topic>Strontium</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Kunihiro</creatorcontrib><creatorcontrib>Tada, Yoko</creatorcontrib><creatorcontrib>Kataoka, Yuji</creatorcontrib><creatorcontrib>Kawamura, Kazuo</creatorcontrib><creatorcontrib>Nagayama, Tsutomu</creatorcontrib><creatorcontrib>Nagayama, Susumu</creatorcontrib><creatorcontrib>Magee, Charles W.</creatorcontrib><creatorcontrib>Buyuklimanli, Temel H.</creatorcontrib><creatorcontrib>Mueller, Dominik Christoph</creatorcontrib><creatorcontrib>Fichtner, Wolfgang</creatorcontrib><creatorcontrib>Zechner, Christoph</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suzuki, Kunihiro</au><au>Tada, Yoko</au><au>Kataoka, Yuji</au><au>Kawamura, Kazuo</au><au>Nagayama, Tsutomu</au><au>Nagayama, Susumu</au><au>Magee, Charles W.</au><au>Buyuklimanli, Temel H.</au><au>Mueller, Dominik Christoph</au><au>Fichtner, Wolfgang</au><au>Zechner, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2007-08-01</date><risdate>2007</risdate><volume>54</volume><issue>8</issue><spage>1985</spage><epage>1993</epage><pages>1985-1993</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, we showed that the maximum active P concentration of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} exists during solid-phase epitaxial recrystallization (SPER). This maximum active concentration is close to the reported values for other active impurity concentrations during SPER. We introduced the concept of an isolated impurity that has no neighbor impurities with a certain lattice range. Assuming that impurities interact with three or four neighbor impurities, we can explain the activation phenomenon during SPER. According to our model, the isolated P concentration N_{\rm iso} has a maximum value of approximately \hbox{2} \times \hbox{10}^{20}\ \hbox{cm}^{-3} at a total impurity concentration of approximately \hbox{10}^{21}\ \hbox{cm}^{-3} , and it decreases with a further increase in total impurity concentration. Deactivation occurs after the completion of SPER with increasing annealing time, and the active impurity concentration decreases with time but is always higher than the maximum diffusion concentration N_{{\rm Diff}\max} . We also observed that N_{{\rm Diff}\max} is independent of the annealing time despite nonthermal activation in the high-concentration region. We evaluated the dependence of N_{{\rm Diff}\max} on annealing temperatures. We think that this N_{{\rm Diff}\max} can be regarded as the electrical solid solubility N_{\rm Esol} that the</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2007.901157</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2007-08, Vol.54 (8), p.1985-1993 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_903641913 |
source | IEEE Electronic Library (IEL) |
subjects | Activation Annealing Applied sciences Deactivation Diffusion coefficient Electronics Epitaxial growth Epitaxy Exact sciences and technology Impurities ion implantation Metallurgy Microelectronic fabrication (materials and surfaces technology) Microwave and submillimeter wave devices, electron transfer devices phosphorus Point defects Recrystallization Resistance Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solid solubility solid-phase epitaxy Solids Strontium Temperature measurement |
title | Maximum Active Concentration of Ion-Implanted Phosphorus During Solid-Phase Epitaxial Recrystallization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Active%20Concentration%20of%20Ion-Implanted%20Phosphorus%20During%20Solid-Phase%20Epitaxial%20Recrystallization&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Suzuki,%20Kunihiro&rft.date=2007-08-01&rft.volume=54&rft.issue=8&rft.spage=1985&rft.epage=1993&rft.pages=1985-1993&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2007.901157&rft_dat=%3Cproquest_RIE%3E880670674%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863799516&rft_id=info:pmid/&rft_ieee_id=4277982&rfr_iscdi=true |