Silicon Carbide Power MOSFET Model and Parameter Extraction Sequence

A compact circuit simulator model is used to describe the performance of a 2-kV, 5-A 4-H silicon carbide (SiC) power DiMOSFET and to perform a detailed comparison with the performance of a widely used 400-V, 5-A Si power MOSFET. The model's channel current expressions are unique in that they in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2007-03, Vol.22 (2), p.353-363
Hauptverfasser: McNutt, T.R., Hefner, A.R., Mantooth, H.A., Berning, D., Sei-Hyung Ryu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 2
container_start_page 353
container_title IEEE transactions on power electronics
container_volume 22
creator McNutt, T.R.
Hefner, A.R.
Mantooth, H.A.
Berning, D.
Sei-Hyung Ryu
description A compact circuit simulator model is used to describe the performance of a 2-kV, 5-A 4-H silicon carbide (SiC) power DiMOSFET and to perform a detailed comparison with the performance of a widely used 400-V, 5-A Si power MOSFET. The model's channel current expressions are unique in that they include the channel regions at the corners of the square or hexagonal cells that turn on at lower gate voltages and the enhanced linear region transconductance due to diffusion in the nonuniformly doped channel. It is shown that the model accurately describes the static and dynamic performance of both the Si and SiC devices and that the diffusion-enhanced channel conductance is essential to describe the SiC DiMOSFET on-state characteristics. The detailed device comparisons reveal that both the on-state performance and switching performance at 25degC are similar between the 400-V Si and 2-kV SiC MOSFETs, with the exception that the SiC device requires twice the gate drive voltage. The main difference between the devices is that the SiC has a five times higher voltage rating without an increase in the specific on-resistance. At higher temperatures (above 100degC), the Si device has a severe reduction in conduction capability, whereas the SiC on-resistance is only minimally affected
doi_str_mv 10.1109/TPEL.2006.889890
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903641221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4118319</ieee_id><sourcerecordid>880663969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-f7914592513e9e401b79264076f238331c2e7323fe3f3d936f37a172a801de923</originalsourceid><addsrcrecordid>eNqFkUFr20AQhZfSQl0390IvotDmJGdmZy3tHIvrpgGHGJyel81qBAqylO7KpP33XePQQg_NaQ7zvfdmeEq9Q1ggAl_cbtebhQaoFtayZXihZsgGS0CoX6oZWLssLTO9Vm9SugdAswScqS-7ru_COBQrH--6Rort-CixuL7ZfV3fFtdjI33hh6bY-uj3MuXV-ucUfZi6rNnJj4MMQd6qV63vk5w9zbn6ntWrb-Xm5vJq9XlTBmNxKtuacyrrJZKwGMC7mnVloK5aTZYIg5aaNLVCLTVMVUu1x1p7C9gIa5qr85PvQxxzcprcvktB-t4PMh6SY6DKoNb4LGktVBVxxZn89F-SjKkR8Ah--Ae8Hw9xyP86nc0sZyZDcIJCHFOK0rqH2O19_OUQ3LEnd-zJHXtyp56y5OOTr0_B9230Q-jSX51dMtl87Fy9P3GdiPxZG0RLOfk3bR6XNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206689193</pqid></control><display><type>article</type><title>Silicon Carbide Power MOSFET Model and Parameter Extraction Sequence</title><source>IEEE Electronic Library (IEL)</source><creator>McNutt, T.R. ; Hefner, A.R. ; Mantooth, H.A. ; Berning, D. ; Sei-Hyung Ryu</creator><creatorcontrib>McNutt, T.R. ; Hefner, A.R. ; Mantooth, H.A. ; Berning, D. ; Sei-Hyung Ryu</creatorcontrib><description>A compact circuit simulator model is used to describe the performance of a 2-kV, 5-A 4-H silicon carbide (SiC) power DiMOSFET and to perform a detailed comparison with the performance of a widely used 400-V, 5-A Si power MOSFET. The model's channel current expressions are unique in that they include the channel regions at the corners of the square or hexagonal cells that turn on at lower gate voltages and the enhanced linear region transconductance due to diffusion in the nonuniformly doped channel. It is shown that the model accurately describes the static and dynamic performance of both the Si and SiC devices and that the diffusion-enhanced channel conductance is essential to describe the SiC DiMOSFET on-state characteristics. The detailed device comparisons reveal that both the on-state performance and switching performance at 25degC are similar between the 400-V Si and 2-kV SiC MOSFETs, with the exception that the SiC device requires twice the gate drive voltage. The main difference between the devices is that the SiC has a five times higher voltage rating without an increase in the specific on-resistance. At higher temperatures (above 100degC), the Si device has a severe reduction in conduction capability, whereas the SiC on-resistance is only minimally affected</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2006.889890</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitance ; Channels ; Circuits ; Devices ; DiMOSFET ; Electric currents ; Electric potential ; Electric resistance ; Electric, optical and optoelectronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Immune system ; Mathematical models ; MOSFET circuits ; MOSFETs ; Other multijunction devices. Power transistors. Thyristors ; Parameter extraction ; Power MOSFET ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Silicon carbide ; silicon carbide (SiC) ; Temperature ; Theoretical study. Circuits analysis and design ; Threshold voltage ; Transconductance ; Transistors ; Voltage</subject><ispartof>IEEE transactions on power electronics, 2007-03, Vol.22 (2), p.353-363</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-f7914592513e9e401b79264076f238331c2e7323fe3f3d936f37a172a801de923</citedby><cites>FETCH-LOGICAL-c481t-f7914592513e9e401b79264076f238331c2e7323fe3f3d936f37a172a801de923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4118319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4118319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18593866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McNutt, T.R.</creatorcontrib><creatorcontrib>Hefner, A.R.</creatorcontrib><creatorcontrib>Mantooth, H.A.</creatorcontrib><creatorcontrib>Berning, D.</creatorcontrib><creatorcontrib>Sei-Hyung Ryu</creatorcontrib><title>Silicon Carbide Power MOSFET Model and Parameter Extraction Sequence</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>A compact circuit simulator model is used to describe the performance of a 2-kV, 5-A 4-H silicon carbide (SiC) power DiMOSFET and to perform a detailed comparison with the performance of a widely used 400-V, 5-A Si power MOSFET. The model's channel current expressions are unique in that they include the channel regions at the corners of the square or hexagonal cells that turn on at lower gate voltages and the enhanced linear region transconductance due to diffusion in the nonuniformly doped channel. It is shown that the model accurately describes the static and dynamic performance of both the Si and SiC devices and that the diffusion-enhanced channel conductance is essential to describe the SiC DiMOSFET on-state characteristics. The detailed device comparisons reveal that both the on-state performance and switching performance at 25degC are similar between the 400-V Si and 2-kV SiC MOSFETs, with the exception that the SiC device requires twice the gate drive voltage. The main difference between the devices is that the SiC has a five times higher voltage rating without an increase in the specific on-resistance. At higher temperatures (above 100degC), the Si device has a severe reduction in conduction capability, whereas the SiC on-resistance is only minimally affected</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Channels</subject><subject>Circuits</subject><subject>Devices</subject><subject>DiMOSFET</subject><subject>Electric currents</subject><subject>Electric potential</subject><subject>Electric resistance</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Immune system</subject><subject>Mathematical models</subject><subject>MOSFET circuits</subject><subject>MOSFETs</subject><subject>Other multijunction devices. Power transistors. Thyristors</subject><subject>Parameter extraction</subject><subject>Power MOSFET</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC)</subject><subject>Temperature</subject><subject>Theoretical study. Circuits analysis and design</subject><subject>Threshold voltage</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>Voltage</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFr20AQhZfSQl0390IvotDmJGdmZy3tHIvrpgGHGJyel81qBAqylO7KpP33XePQQg_NaQ7zvfdmeEq9Q1ggAl_cbtebhQaoFtayZXihZsgGS0CoX6oZWLssLTO9Vm9SugdAswScqS-7ru_COBQrH--6Rort-CixuL7ZfV3fFtdjI33hh6bY-uj3MuXV-ucUfZi6rNnJj4MMQd6qV63vk5w9zbn6ntWrb-Xm5vJq9XlTBmNxKtuacyrrJZKwGMC7mnVloK5aTZYIg5aaNLVCLTVMVUu1x1p7C9gIa5qr85PvQxxzcprcvktB-t4PMh6SY6DKoNb4LGktVBVxxZn89F-SjKkR8Ah--Ae8Hw9xyP86nc0sZyZDcIJCHFOK0rqH2O19_OUQ3LEnd-zJHXtyp56y5OOTr0_B9230Q-jSX51dMtl87Fy9P3GdiPxZG0RLOfk3bR6XNQ</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>McNutt, T.R.</creator><creator>Hefner, A.R.</creator><creator>Mantooth, H.A.</creator><creator>Berning, D.</creator><creator>Sei-Hyung Ryu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20070301</creationdate><title>Silicon Carbide Power MOSFET Model and Parameter Extraction Sequence</title><author>McNutt, T.R. ; Hefner, A.R. ; Mantooth, H.A. ; Berning, D. ; Sei-Hyung Ryu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-f7914592513e9e401b79264076f238331c2e7323fe3f3d936f37a172a801de923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Channels</topic><topic>Circuits</topic><topic>Devices</topic><topic>DiMOSFET</topic><topic>Electric currents</topic><topic>Electric potential</topic><topic>Electric resistance</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Immune system</topic><topic>Mathematical models</topic><topic>MOSFET circuits</topic><topic>MOSFETs</topic><topic>Other multijunction devices. Power transistors. Thyristors</topic><topic>Parameter extraction</topic><topic>Power MOSFET</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC)</topic><topic>Temperature</topic><topic>Theoretical study. Circuits analysis and design</topic><topic>Threshold voltage</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNutt, T.R.</creatorcontrib><creatorcontrib>Hefner, A.R.</creatorcontrib><creatorcontrib>Mantooth, H.A.</creatorcontrib><creatorcontrib>Berning, D.</creatorcontrib><creatorcontrib>Sei-Hyung Ryu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McNutt, T.R.</au><au>Hefner, A.R.</au><au>Mantooth, H.A.</au><au>Berning, D.</au><au>Sei-Hyung Ryu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon Carbide Power MOSFET Model and Parameter Extraction Sequence</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2007-03-01</date><risdate>2007</risdate><volume>22</volume><issue>2</issue><spage>353</spage><epage>363</epage><pages>353-363</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>A compact circuit simulator model is used to describe the performance of a 2-kV, 5-A 4-H silicon carbide (SiC) power DiMOSFET and to perform a detailed comparison with the performance of a widely used 400-V, 5-A Si power MOSFET. The model's channel current expressions are unique in that they include the channel regions at the corners of the square or hexagonal cells that turn on at lower gate voltages and the enhanced linear region transconductance due to diffusion in the nonuniformly doped channel. It is shown that the model accurately describes the static and dynamic performance of both the Si and SiC devices and that the diffusion-enhanced channel conductance is essential to describe the SiC DiMOSFET on-state characteristics. The detailed device comparisons reveal that both the on-state performance and switching performance at 25degC are similar between the 400-V Si and 2-kV SiC MOSFETs, with the exception that the SiC device requires twice the gate drive voltage. The main difference between the devices is that the SiC has a five times higher voltage rating without an increase in the specific on-resistance. At higher temperatures (above 100degC), the Si device has a severe reduction in conduction capability, whereas the SiC on-resistance is only minimally affected</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2006.889890</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2007-03, Vol.22 (2), p.353-363
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_miscellaneous_903641221
source IEEE Electronic Library (IEL)
subjects Applied sciences
Capacitance
Channels
Circuits
Devices
DiMOSFET
Electric currents
Electric potential
Electric resistance
Electric, optical and optoelectronic circuits
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Immune system
Mathematical models
MOSFET circuits
MOSFETs
Other multijunction devices. Power transistors. Thyristors
Parameter extraction
Power MOSFET
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Silicon carbide
silicon carbide (SiC)
Temperature
Theoretical study. Circuits analysis and design
Threshold voltage
Transconductance
Transistors
Voltage
title Silicon Carbide Power MOSFET Model and Parameter Extraction Sequence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20Carbide%20Power%20MOSFET%20Model%20and%20Parameter%20Extraction%20Sequence&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=McNutt,%20T.R.&rft.date=2007-03-01&rft.volume=22&rft.issue=2&rft.spage=353&rft.epage=363&rft.pages=353-363&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2006.889890&rft_dat=%3Cproquest_RIE%3E880663969%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206689193&rft_id=info:pmid/&rft_ieee_id=4118319&rfr_iscdi=true