Architecture and Physical Implementation of a Third Generation 65 nm, 16 Core, 32 Thread Chip-Multithreading SPARC Processor

This third-generation Chip-Multithreading (CMT) SPARC processor consists of 16 cores with shared memory architecture and supports a total of 32 main threads plus 32 scout threads. It is targeted for high-performance servers, and is optimized for both single- and multi-threaded applications. The 396...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2009-01, Vol.44 (1), p.7-17
Hauptverfasser: Konstadinidis, G.K., Tremblay, M., Chaudhry, S., Rashid, M., Lai, P.F., Otaguro, Y., Orginos, Y., Parampalli, S., Steigerwald, M., Gundala, S., Pyapali, R., Rarick, L.D., Elkin, I., Ge, Y., Parulkar, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 7
container_title IEEE journal of solid-state circuits
container_volume 44
creator Konstadinidis, G.K.
Tremblay, M.
Chaudhry, S.
Rashid, M.
Lai, P.F.
Otaguro, Y.
Orginos, Y.
Parampalli, S.
Steigerwald, M.
Gundala, S.
Pyapali, R.
Rarick, L.D.
Elkin, I.
Ge, Y.
Parulkar, I.
description This third-generation Chip-Multithreading (CMT) SPARC processor consists of 16 cores with shared memory architecture and supports a total of 32 main threads plus 32 scout threads. It is targeted for high-performance servers, and is optimized for both single- and multi-threaded applications. The 396 mm 2 chip is fabricated in an 11 metal layer 65-nm CMOS process and operates at a nominal frequency of 2.3 GHz, consuming a maximum power of 250 W at 1.2 V. This paper provides an overview of the architectural highlights and describes the physical implementation challenges and solutions including circuit innovations in memory arrays, register files, and floating-point hardware that boost the performance and circuit robustness with low area overhead.
doi_str_mv 10.1109/JSSC.2008.2007144
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903640979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4735553</ieee_id><sourcerecordid>2543332731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-d56b3a5ae38f3f033f10bc44b8c07e3545e1e3e0b86da60f643ace60f2edf29c3</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EEiHwAxAbCwm66RR7rj22l9EISlERESkSu5HjuSau5pHaM4tK_Pg6JOqCBWyu7-M7R7IOIa85u-CcmQ9fNpv6omRMH4riQjwhCy6lLriCn0_JgjGuC5Nvz8mLlG7zKITmC_J7Fd0uTOimOSK1Q0vXu_sUnO3oVb_vsMdhslMYBzp6aunNLsSWXuKA8bitJB36c8orWo8RzymUmYloW1rvwr74OndTmP4swvCLbtar7zVdx9FhSmN8SZ552yV8dXqX5Menjzf15-L62-VVvbounOBqKlpZbcFKi6A9eAbgOds6IbbaMYUghUSOgGyrq9ZWzFcCrMPclNj60jhYkrOj7z6OdzOmqelDcth1dsBxTo1hUAlmlPkvqZVkIHQWLMn7f5IghNTAygy-_Qu8Hec45P82hnNjTFmpDPEj5OKYUkTf7GPobbxvOGsOATeHgJtDwM0p4Kx5dzK2Keflox1cSI_Ckmd3qSBzb45cQMTHs1AgpQR4AD_grLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911999267</pqid></control><display><type>article</type><title>Architecture and Physical Implementation of a Third Generation 65 nm, 16 Core, 32 Thread Chip-Multithreading SPARC Processor</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Konstadinidis, G.K. ; Tremblay, M. ; Chaudhry, S. ; Rashid, M. ; Lai, P.F. ; Otaguro, Y. ; Orginos, Y. ; Parampalli, S. ; Steigerwald, M. ; Gundala, S. ; Pyapali, R. ; Rarick, L.D. ; Elkin, I. ; Ge, Y. ; Parulkar, I.</creator><creatorcontrib>Konstadinidis, G.K. ; Tremblay, M. ; Chaudhry, S. ; Rashid, M. ; Lai, P.F. ; Otaguro, Y. ; Orginos, Y. ; Parampalli, S. ; Steigerwald, M. ; Gundala, S. ; Pyapali, R. ; Rarick, L.D. ; Elkin, I. ; Ge, Y. ; Parulkar, I.</creatorcontrib><description>This third-generation Chip-Multithreading (CMT) SPARC processor consists of 16 cores with shared memory architecture and supports a total of 32 main threads plus 32 scout threads. It is targeted for high-performance servers, and is optimized for both single- and multi-threaded applications. The 396 mm 2 chip is fabricated in an 11 metal layer 65-nm CMOS process and operates at a nominal frequency of 2.3 GHz, consuming a maximum power of 250 W at 1.2 V. This paper provides an overview of the architectural highlights and describes the physical implementation challenges and solutions including circuit innovations in memory arrays, register files, and floating-point hardware that boost the performance and circuit robustness with low area overhead.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2008.2007144</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Architecture ; Arrays ; chip multi-threading (CMT) ; Circuits ; clocking ; Clocks ; CMOS ; computer architecture ; Computers, microcomputers ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; execute ahead ; Floating point arithmetic ; Hardware ; hardware scout ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Magnetic and optical mass memories ; microprocessor ; Microprocessors ; multi-core ; multi-threaded ; Out of order ; Pipelines ; power management ; register files ; Registers ; Robustness ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SerDes ; SPARC architecture ; Storage and reproduction of information ; synchronous and asynchronous clock domains ; Throughput ; throughput computing ; transactional memory</subject><ispartof>IEEE journal of solid-state circuits, 2009-01, Vol.44 (1), p.7-17</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-d56b3a5ae38f3f033f10bc44b8c07e3545e1e3e0b86da60f643ace60f2edf29c3</citedby><cites>FETCH-LOGICAL-c417t-d56b3a5ae38f3f033f10bc44b8c07e3545e1e3e0b86da60f643ace60f2edf29c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4735553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,4036,4037,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4735553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21119573$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Konstadinidis, G.K.</creatorcontrib><creatorcontrib>Tremblay, M.</creatorcontrib><creatorcontrib>Chaudhry, S.</creatorcontrib><creatorcontrib>Rashid, M.</creatorcontrib><creatorcontrib>Lai, P.F.</creatorcontrib><creatorcontrib>Otaguro, Y.</creatorcontrib><creatorcontrib>Orginos, Y.</creatorcontrib><creatorcontrib>Parampalli, S.</creatorcontrib><creatorcontrib>Steigerwald, M.</creatorcontrib><creatorcontrib>Gundala, S.</creatorcontrib><creatorcontrib>Pyapali, R.</creatorcontrib><creatorcontrib>Rarick, L.D.</creatorcontrib><creatorcontrib>Elkin, I.</creatorcontrib><creatorcontrib>Ge, Y.</creatorcontrib><creatorcontrib>Parulkar, I.</creatorcontrib><title>Architecture and Physical Implementation of a Third Generation 65 nm, 16 Core, 32 Thread Chip-Multithreading SPARC Processor</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This third-generation Chip-Multithreading (CMT) SPARC processor consists of 16 cores with shared memory architecture and supports a total of 32 main threads plus 32 scout threads. It is targeted for high-performance servers, and is optimized for both single- and multi-threaded applications. The 396 mm 2 chip is fabricated in an 11 metal layer 65-nm CMOS process and operates at a nominal frequency of 2.3 GHz, consuming a maximum power of 250 W at 1.2 V. This paper provides an overview of the architectural highlights and describes the physical implementation challenges and solutions including circuit innovations in memory arrays, register files, and floating-point hardware that boost the performance and circuit robustness with low area overhead.</description><subject>Applied sciences</subject><subject>Architecture</subject><subject>Arrays</subject><subject>chip multi-threading (CMT)</subject><subject>Circuits</subject><subject>clocking</subject><subject>Clocks</subject><subject>CMOS</subject><subject>computer architecture</subject><subject>Computers, microcomputers</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>execute ahead</subject><subject>Floating point arithmetic</subject><subject>Hardware</subject><subject>hardware scout</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Magnetic and optical mass memories</subject><subject>microprocessor</subject><subject>Microprocessors</subject><subject>multi-core</subject><subject>multi-threaded</subject><subject>Out of order</subject><subject>Pipelines</subject><subject>power management</subject><subject>register files</subject><subject>Registers</subject><subject>Robustness</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SerDes</subject><subject>SPARC architecture</subject><subject>Storage and reproduction of information</subject><subject>synchronous and asynchronous clock domains</subject><subject>Throughput</subject><subject>throughput computing</subject><subject>transactional memory</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUtvEzEUhS0EEiHwAxAbCwm66RR7rj22l9EISlERESkSu5HjuSau5pHaM4tK_Pg6JOqCBWyu7-M7R7IOIa85u-CcmQ9fNpv6omRMH4riQjwhCy6lLriCn0_JgjGuC5Nvz8mLlG7zKITmC_J7Fd0uTOimOSK1Q0vXu_sUnO3oVb_vsMdhslMYBzp6aunNLsSWXuKA8bitJB36c8orWo8RzymUmYloW1rvwr74OndTmP4swvCLbtar7zVdx9FhSmN8SZ552yV8dXqX5Menjzf15-L62-VVvbounOBqKlpZbcFKi6A9eAbgOds6IbbaMYUghUSOgGyrq9ZWzFcCrMPclNj60jhYkrOj7z6OdzOmqelDcth1dsBxTo1hUAlmlPkvqZVkIHQWLMn7f5IghNTAygy-_Qu8Hec45P82hnNjTFmpDPEj5OKYUkTf7GPobbxvOGsOATeHgJtDwM0p4Kx5dzK2Keflox1cSI_Ckmd3qSBzb45cQMTHs1AgpQR4AD_grLU</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Konstadinidis, G.K.</creator><creator>Tremblay, M.</creator><creator>Chaudhry, S.</creator><creator>Rashid, M.</creator><creator>Lai, P.F.</creator><creator>Otaguro, Y.</creator><creator>Orginos, Y.</creator><creator>Parampalli, S.</creator><creator>Steigerwald, M.</creator><creator>Gundala, S.</creator><creator>Pyapali, R.</creator><creator>Rarick, L.D.</creator><creator>Elkin, I.</creator><creator>Ge, Y.</creator><creator>Parulkar, I.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Architecture and Physical Implementation of a Third Generation 65 nm, 16 Core, 32 Thread Chip-Multithreading SPARC Processor</title><author>Konstadinidis, G.K. ; Tremblay, M. ; Chaudhry, S. ; Rashid, M. ; Lai, P.F. ; Otaguro, Y. ; Orginos, Y. ; Parampalli, S. ; Steigerwald, M. ; Gundala, S. ; Pyapali, R. ; Rarick, L.D. ; Elkin, I. ; Ge, Y. ; Parulkar, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-d56b3a5ae38f3f033f10bc44b8c07e3545e1e3e0b86da60f643ace60f2edf29c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Architecture</topic><topic>Arrays</topic><topic>chip multi-threading (CMT)</topic><topic>Circuits</topic><topic>clocking</topic><topic>Clocks</topic><topic>CMOS</topic><topic>computer architecture</topic><topic>Computers, microcomputers</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>execute ahead</topic><topic>Floating point arithmetic</topic><topic>Hardware</topic><topic>hardware scout</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Magnetic and optical mass memories</topic><topic>microprocessor</topic><topic>Microprocessors</topic><topic>multi-core</topic><topic>multi-threaded</topic><topic>Out of order</topic><topic>Pipelines</topic><topic>power management</topic><topic>register files</topic><topic>Registers</topic><topic>Robustness</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SerDes</topic><topic>SPARC architecture</topic><topic>Storage and reproduction of information</topic><topic>synchronous and asynchronous clock domains</topic><topic>Throughput</topic><topic>throughput computing</topic><topic>transactional memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konstadinidis, G.K.</creatorcontrib><creatorcontrib>Tremblay, M.</creatorcontrib><creatorcontrib>Chaudhry, S.</creatorcontrib><creatorcontrib>Rashid, M.</creatorcontrib><creatorcontrib>Lai, P.F.</creatorcontrib><creatorcontrib>Otaguro, Y.</creatorcontrib><creatorcontrib>Orginos, Y.</creatorcontrib><creatorcontrib>Parampalli, S.</creatorcontrib><creatorcontrib>Steigerwald, M.</creatorcontrib><creatorcontrib>Gundala, S.</creatorcontrib><creatorcontrib>Pyapali, R.</creatorcontrib><creatorcontrib>Rarick, L.D.</creatorcontrib><creatorcontrib>Elkin, I.</creatorcontrib><creatorcontrib>Ge, Y.</creatorcontrib><creatorcontrib>Parulkar, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Konstadinidis, G.K.</au><au>Tremblay, M.</au><au>Chaudhry, S.</au><au>Rashid, M.</au><au>Lai, P.F.</au><au>Otaguro, Y.</au><au>Orginos, Y.</au><au>Parampalli, S.</au><au>Steigerwald, M.</au><au>Gundala, S.</au><au>Pyapali, R.</au><au>Rarick, L.D.</au><au>Elkin, I.</au><au>Ge, Y.</au><au>Parulkar, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture and Physical Implementation of a Third Generation 65 nm, 16 Core, 32 Thread Chip-Multithreading SPARC Processor</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2009-01</date><risdate>2009</risdate><volume>44</volume><issue>1</issue><spage>7</spage><epage>17</epage><pages>7-17</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This third-generation Chip-Multithreading (CMT) SPARC processor consists of 16 cores with shared memory architecture and supports a total of 32 main threads plus 32 scout threads. It is targeted for high-performance servers, and is optimized for both single- and multi-threaded applications. The 396 mm 2 chip is fabricated in an 11 metal layer 65-nm CMOS process and operates at a nominal frequency of 2.3 GHz, consuming a maximum power of 250 W at 1.2 V. This paper provides an overview of the architectural highlights and describes the physical implementation challenges and solutions including circuit innovations in memory arrays, register files, and floating-point hardware that boost the performance and circuit robustness with low area overhead.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2008.2007144</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2009-01, Vol.44 (1), p.7-17
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_miscellaneous_903640979
source IEEE/IET Electronic Library (IEL)
subjects Applied sciences
Architecture
Arrays
chip multi-threading (CMT)
Circuits
clocking
Clocks
CMOS
computer architecture
Computers, microcomputers
Design. Technologies. Operation analysis. Testing
Electronics
Exact sciences and technology
execute ahead
Floating point arithmetic
Hardware
hardware scout
Integrated circuits
Integrated circuits by function (including memories and processors)
Magnetic and optical mass memories
microprocessor
Microprocessors
multi-core
multi-threaded
Out of order
Pipelines
power management
register files
Registers
Robustness
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
SerDes
SPARC architecture
Storage and reproduction of information
synchronous and asynchronous clock domains
Throughput
throughput computing
transactional memory
title Architecture and Physical Implementation of a Third Generation 65 nm, 16 Core, 32 Thread Chip-Multithreading SPARC Processor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%20and%20Physical%20Implementation%20of%20a%20Third%20Generation%2065%20nm,%2016%20Core,%2032%20Thread%20Chip-Multithreading%20SPARC%20Processor&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Konstadinidis,%20G.K.&rft.date=2009-01&rft.volume=44&rft.issue=1&rft.spage=7&rft.epage=17&rft.pages=7-17&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2008.2007144&rft_dat=%3Cproquest_RIE%3E2543332731%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911999267&rft_id=info:pmid/&rft_ieee_id=4735553&rfr_iscdi=true