New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces

A point of a discrete object is called simple if it can be deleted from this object without altering topology. In this article, we present new characterizations of simple points which hold in dimensions 2, 3 and 4, and which lead to efficient algorithms for detecting such points. In order to prove t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2009-04, Vol.31 (4), p.637-648
Hauptverfasser: Couprie, M., Bertrand, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue 4
container_start_page 637
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 31
creator Couprie, M.
Bertrand, G.
description A point of a discrete object is called simple if it can be deleted from this object without altering topology. In this article, we present new characterizations of simple points which hold in dimensions 2, 3 and 4, and which lead to efficient algorithms for detecting such points. In order to prove these characterizations, we establish two confluence properties of the collapse operation which hold in the neighborhood of a point in spaces of low dimension. This work is settled in the framework of cubical complexes, which provides a sound topological basis for image analysis, and allows to retrieve the main notions and results of digital topology, in particular the notion of simple point.
doi_str_mv 10.1109/TPAMI.2008.117
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903639969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4522557</ieee_id><sourcerecordid>903639969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-ed712b60e93d3ca590167f78700d3b6823ffa415eae4bb7a330e33091b333593</originalsourceid><addsrcrecordid>eNqF0kGLEzEUAOAgittdvXoRJAgqglNf8pJJciyt2oWqC9t7yEwzbJbpTDeZKuuvN2NLBQ_uIYQkXx7vJY-QFwymjIH5uL6afb2ccgCd1-oRmTCDpkCJ5jGZACt5oTXXZ-Q8pVsAJiTgU3LGDOcGNEzI8pv_Sec3Lrp68DH8ckPou0T7hl6H7a719KoP3ZBo6ChffKCYh-s2VCzoIqQ6-sHT652rfXpGnjSuTf75cb4g68-f1vNlsfr-5XI-WxV1zmko_EYxXpXgDW6wdtLkHFWjtALYYFVqjk3jBJPeeVFVyiGCz8OwChGlwQvy_hD2xrV2F8PWxXvbu2CXs5Ud9wBKztHgD5btu4Pdxf5u79Ngtzln37au8_0-WQNYojGleVDq0mhhsJRZvv2vLHM0JVn5IEQhBKCGDF__A2_7fezyG1otlVBM6rGU6QHVsU8p-uZUOwM7NoL90wh2bIS8VvnCq2PUfbX1m7_8-PMZvDkCl2rXNtF1dUgnx5lQXOD4NC8PLnjvT8dCci6lwt_uaL21</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857471581</pqid></control><display><type>article</type><title>New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces</title><source>IEEE Electronic Library (IEL)</source><creator>Couprie, M. ; Bertrand, G.</creator><creatorcontrib>Couprie, M. ; Bertrand, G.</creatorcontrib><description>A point of a discrete object is called simple if it can be deleted from this object without altering topology. In this article, we present new characterizations of simple points which hold in dimensions 2, 3 and 4, and which lead to efficient algorithms for detecting such points. In order to prove these characterizations, we establish two confluence properties of the collapse operation which hold in the neighborhood of a point in spaces of low dimension. This work is settled in the framework of cubical complexes, which provides a sound topological basis for image analysis, and allows to retrieve the main notions and results of digital topology, in particular the notion of simple point.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2008.117</identifier><identifier>PMID: 19229080</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Acoustics ; Algorithms ; Animation ; Applied sciences ; Artificial intelligence ; Biomedical imaging ; Collapse ; Computation and Language ; Computer Science ; Computer science; control theory; systems ; Digital ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Image analysis ; Image Processing and Computer Vision ; Image retrieval ; Image segmentation ; Image sequence analysis ; Intelligence ; Magnetic resonance imaging ; Pattern analysis ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry ; Physics ; Shape ; Skeleton ; Three dimensional ; Topology ; Transduction; acoustical devices for the generation and reproduction of sound ; X-ray imaging</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2009-04, Vol.31 (4), p.637-648</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-ed712b60e93d3ca590167f78700d3b6823ffa415eae4bb7a330e33091b333593</citedby><cites>FETCH-LOGICAL-c539t-ed712b60e93d3ca590167f78700d3b6823ffa415eae4bb7a330e33091b333593</cites><orcidid>0009-0004-7294-7081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4522557$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4522557$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21472439$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19229080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00622393$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Couprie, M.</creatorcontrib><creatorcontrib>Bertrand, G.</creatorcontrib><title>New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>A point of a discrete object is called simple if it can be deleted from this object without altering topology. In this article, we present new characterizations of simple points which hold in dimensions 2, 3 and 4, and which lead to efficient algorithms for detecting such points. In order to prove these characterizations, we establish two confluence properties of the collapse operation which hold in the neighborhood of a point in spaces of low dimension. This work is settled in the framework of cubical complexes, which provides a sound topological basis for image analysis, and allows to retrieve the main notions and results of digital topology, in particular the notion of simple point.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Animation</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biomedical imaging</subject><subject>Collapse</subject><subject>Computation and Language</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Digital</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image analysis</subject><subject>Image Processing and Computer Vision</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>Image sequence analysis</subject><subject>Intelligence</subject><subject>Magnetic resonance imaging</subject><subject>Pattern analysis</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Physics</subject><subject>Shape</subject><subject>Skeleton</subject><subject>Three dimensional</subject><subject>Topology</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>X-ray imaging</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0kGLEzEUAOAgittdvXoRJAgqglNf8pJJciyt2oWqC9t7yEwzbJbpTDeZKuuvN2NLBQ_uIYQkXx7vJY-QFwymjIH5uL6afb2ccgCd1-oRmTCDpkCJ5jGZACt5oTXXZ-Q8pVsAJiTgU3LGDOcGNEzI8pv_Sec3Lrp68DH8ckPou0T7hl6H7a719KoP3ZBo6ChffKCYh-s2VCzoIqQ6-sHT652rfXpGnjSuTf75cb4g68-f1vNlsfr-5XI-WxV1zmko_EYxXpXgDW6wdtLkHFWjtALYYFVqjk3jBJPeeVFVyiGCz8OwChGlwQvy_hD2xrV2F8PWxXvbu2CXs5Ud9wBKztHgD5btu4Pdxf5u79Ngtzln37au8_0-WQNYojGleVDq0mhhsJRZvv2vLHM0JVn5IEQhBKCGDF__A2_7fezyG1otlVBM6rGU6QHVsU8p-uZUOwM7NoL90wh2bIS8VvnCq2PUfbX1m7_8-PMZvDkCl2rXNtF1dUgnx5lQXOD4NC8PLnjvT8dCci6lwt_uaL21</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Couprie, M.</creator><creator>Bertrand, G.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0004-7294-7081</orcidid></search><sort><creationdate>20090401</creationdate><title>New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces</title><author>Couprie, M. ; Bertrand, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-ed712b60e93d3ca590167f78700d3b6823ffa415eae4bb7a330e33091b333593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Animation</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biomedical imaging</topic><topic>Collapse</topic><topic>Computation and Language</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Digital</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image analysis</topic><topic>Image Processing and Computer Vision</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>Image sequence analysis</topic><topic>Intelligence</topic><topic>Magnetic resonance imaging</topic><topic>Pattern analysis</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Physics</topic><topic>Shape</topic><topic>Skeleton</topic><topic>Three dimensional</topic><topic>Topology</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>X-ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couprie, M.</creatorcontrib><creatorcontrib>Bertrand, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Couprie, M.</au><au>Bertrand, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>31</volume><issue>4</issue><spage>637</spage><epage>648</epage><pages>637-648</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A point of a discrete object is called simple if it can be deleted from this object without altering topology. In this article, we present new characterizations of simple points which hold in dimensions 2, 3 and 4, and which lead to efficient algorithms for detecting such points. In order to prove these characterizations, we establish two confluence properties of the collapse operation which hold in the neighborhood of a point in spaces of low dimension. This work is settled in the framework of cubical complexes, which provides a sound topological basis for image analysis, and allows to retrieve the main notions and results of digital topology, in particular the notion of simple point.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>19229080</pmid><doi>10.1109/TPAMI.2008.117</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0004-7294-7081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2009-04, Vol.31 (4), p.637-648
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_903639969
source IEEE Electronic Library (IEL)
subjects Acoustics
Algorithms
Animation
Applied sciences
Artificial intelligence
Biomedical imaging
Collapse
Computation and Language
Computer Science
Computer science
control theory
systems
Digital
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Image analysis
Image Processing and Computer Vision
Image retrieval
Image segmentation
Image sequence analysis
Intelligence
Magnetic resonance imaging
Pattern analysis
Pattern Recognition
Pattern recognition. Digital image processing. Computational geometry
Physics
Shape
Skeleton
Three dimensional
Topology
Transduction
acoustical devices for the generation and reproduction of sound
X-ray imaging
title New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Characterizations%20of%20Simple%20Points%20in%202D,%203D,%20and%204D%20Discrete%20Spaces&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Couprie,%20M.&rft.date=2009-04-01&rft.volume=31&rft.issue=4&rft.spage=637&rft.epage=648&rft.pages=637-648&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2008.117&rft_dat=%3Cproquest_RIE%3E903639969%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857471581&rft_id=info:pmid/19229080&rft_ieee_id=4522557&rfr_iscdi=true