Reduction of Average Path Length in Binary Decision Diagrams by Spectral Methods
This paper deals with analytic methods for the calculation and reduction of the average path lengths (APLs) in binary decision diagrams (BDDs). Usually, information-theoretic measures and information-theoretic techniques are used to construct BDDs of minimal APLs. Specifically, the mutual informatio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2008-04, Vol.57 (4), p.520-531 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 531 |
---|---|
container_issue | 4 |
container_start_page | 520 |
container_title | IEEE transactions on computers |
container_volume | 57 |
creator | Keren, O. |
description | This paper deals with analytic methods for the calculation and reduction of the average path lengths (APLs) in binary decision diagrams (BDDs). Usually, information-theoretic measures and information-theoretic techniques are used to construct BDDs of minimal APLs. Specifically, the mutual information between a Boolean function and its variables and the Shannon-Fano prefix coding are utilized. This paper deals with the problem of the APL reduction by using spectral techniques. Particularly, methods based on the properties of the Walsh spectrum of a Boolean function and its autocorrelation function are discussed. It is shown that the APL is a linear function of the autocorrelation values, that is, the APL depends on the Boolean function's properties in the time domain (autocorrelation) rather on the Boolean function's properties in the frequency domain (Walsh spectrum). In addition, it is shown that information-theoretic criteria like the mutual information or the conditional entropy are equivalent to frequency-domain criteria. Consequently, existing information-theoretic approaches for APL reduction that are based on mutual-information criterion or the Walsh transform coefficients may derive a suboptimal APL. The representation of the APL as a function of the autocorrelation values opens a way to determine the optimal ordering of the input variables analytically. Two procedures for APL reduction by ordering and by using linear combinations of the input variables are presented: (1) minimization by using the autocorrelation values and (2) minimization by using the mutual information between the Boolean function and a linear function of the input variables. The time-domain approach may derive a linearized BDD of a lower APL, whereas the information-theoretic approach has a lower computational complexity with comparable performance. Experimental results show the efficiency of the suggested techniques. |
doi_str_mv | 10.1109/TC.2007.70811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903637141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4358255</ieee_id><sourcerecordid>2324084491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-bd5acfde35cc396d25108106322c359d386ee16ea376ab174edf0c0eb2703e1a3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQpjEwsFgNMKWc7tuMRWr6kIioos-U6lzZVmxQ7Req_J6WIgQGmd3l0uruXkFMGPcbAXI37PQ6gexoyxvZIh0mpE2Ok2icdAJYlRqRwSI5inAOA4mA6ZPSC-do3ZV3RuqDXHxjcFOnINTM6xGraRlnRm7JyYUMH6Mu4lYPSTYNbRjrZ0NcV-ia4BX3CZlbn8ZgcFG4R8eQ7u-Tt7nbcf0iGz_eP_eth4oU2TTLJpfNFjkJ6L4zKuWTt1qAE515Ik4tMITKFTmjlJkynmBfgASdcg0DmRJdc7uauQv2-xtjYZRk9LhauwnodrQGhhGYp-1dmWkJquMhaefGnFGkqVcZkC89_wXm9DlV7r80Ul4oZrlqU7JAPdYwBC7sK5bJ9pGVgt4XZcd9uC7NfhbX-bOdLRPyxqZAZl1J8Am3xjxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862561926</pqid></control><display><type>article</type><title>Reduction of Average Path Length in Binary Decision Diagrams by Spectral Methods</title><source>IEEE Electronic Library (IEL)</source><creator>Keren, O.</creator><creatorcontrib>Keren, O.</creatorcontrib><description>This paper deals with analytic methods for the calculation and reduction of the average path lengths (APLs) in binary decision diagrams (BDDs). Usually, information-theoretic measures and information-theoretic techniques are used to construct BDDs of minimal APLs. Specifically, the mutual information between a Boolean function and its variables and the Shannon-Fano prefix coding are utilized. This paper deals with the problem of the APL reduction by using spectral techniques. Particularly, methods based on the properties of the Walsh spectrum of a Boolean function and its autocorrelation function are discussed. It is shown that the APL is a linear function of the autocorrelation values, that is, the APL depends on the Boolean function's properties in the time domain (autocorrelation) rather on the Boolean function's properties in the frequency domain (Walsh spectrum). In addition, it is shown that information-theoretic criteria like the mutual information or the conditional entropy are equivalent to frequency-domain criteria. Consequently, existing information-theoretic approaches for APL reduction that are based on mutual-information criterion or the Walsh transform coefficients may derive a suboptimal APL. The representation of the APL as a function of the autocorrelation values opens a way to determine the optimal ordering of the input variables analytically. Two procedures for APL reduction by ordering and by using linear combinations of the input variables are presented: (1) minimization by using the autocorrelation values and (2) minimization by using the mutual information between the Boolean function and a linear function of the input variables. The time-domain approach may derive a linearized BDD of a lower APL, whereas the information-theoretic approach has a lower computational complexity with comparable performance. Experimental results show the efficiency of the suggested techniques.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2007.70811</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; APL (programming language) ; Autocorrelation ; Automatic synthesis ; Boolean functions ; Correlation ; Criteria ; Data structures ; Decision trees ; Input variables ; Logic Design ; Mathematical analysis ; Mathematical models ; Minimization ; Mutual information ; Optimization ; Reduction ; Spectral methods ; Studies ; Vectors</subject><ispartof>IEEE transactions on computers, 2008-04, Vol.57 (4), p.520-531</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-bd5acfde35cc396d25108106322c359d386ee16ea376ab174edf0c0eb2703e1a3</citedby><cites>FETCH-LOGICAL-c379t-bd5acfde35cc396d25108106322c359d386ee16ea376ab174edf0c0eb2703e1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4358255$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4358255$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Keren, O.</creatorcontrib><title>Reduction of Average Path Length in Binary Decision Diagrams by Spectral Methods</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>This paper deals with analytic methods for the calculation and reduction of the average path lengths (APLs) in binary decision diagrams (BDDs). Usually, information-theoretic measures and information-theoretic techniques are used to construct BDDs of minimal APLs. Specifically, the mutual information between a Boolean function and its variables and the Shannon-Fano prefix coding are utilized. This paper deals with the problem of the APL reduction by using spectral techniques. Particularly, methods based on the properties of the Walsh spectrum of a Boolean function and its autocorrelation function are discussed. It is shown that the APL is a linear function of the autocorrelation values, that is, the APL depends on the Boolean function's properties in the time domain (autocorrelation) rather on the Boolean function's properties in the frequency domain (Walsh spectrum). In addition, it is shown that information-theoretic criteria like the mutual information or the conditional entropy are equivalent to frequency-domain criteria. Consequently, existing information-theoretic approaches for APL reduction that are based on mutual-information criterion or the Walsh transform coefficients may derive a suboptimal APL. The representation of the APL as a function of the autocorrelation values opens a way to determine the optimal ordering of the input variables analytically. Two procedures for APL reduction by ordering and by using linear combinations of the input variables are presented: (1) minimization by using the autocorrelation values and (2) minimization by using the mutual information between the Boolean function and a linear function of the input variables. The time-domain approach may derive a linearized BDD of a lower APL, whereas the information-theoretic approach has a lower computational complexity with comparable performance. Experimental results show the efficiency of the suggested techniques.</description><subject>Algorithms</subject><subject>APL (programming language)</subject><subject>Autocorrelation</subject><subject>Automatic synthesis</subject><subject>Boolean functions</subject><subject>Correlation</subject><subject>Criteria</subject><subject>Data structures</subject><subject>Decision trees</subject><subject>Input variables</subject><subject>Logic Design</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Minimization</subject><subject>Mutual information</subject><subject>Optimization</subject><subject>Reduction</subject><subject>Spectral methods</subject><subject>Studies</subject><subject>Vectors</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1PwzAQBmALgUQpjEwsFgNMKWc7tuMRWr6kIioos-U6lzZVmxQ7Req_J6WIgQGmd3l0uruXkFMGPcbAXI37PQ6gexoyxvZIh0mpE2Ok2icdAJYlRqRwSI5inAOA4mA6ZPSC-do3ZV3RuqDXHxjcFOnINTM6xGraRlnRm7JyYUMH6Mu4lYPSTYNbRjrZ0NcV-ia4BX3CZlbn8ZgcFG4R8eQ7u-Tt7nbcf0iGz_eP_eth4oU2TTLJpfNFjkJ6L4zKuWTt1qAE515Ik4tMITKFTmjlJkynmBfgASdcg0DmRJdc7uauQv2-xtjYZRk9LhauwnodrQGhhGYp-1dmWkJquMhaefGnFGkqVcZkC89_wXm9DlV7r80Ul4oZrlqU7JAPdYwBC7sK5bJ9pGVgt4XZcd9uC7NfhbX-bOdLRPyxqZAZl1J8Am3xjxE</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Keren, O.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080401</creationdate><title>Reduction of Average Path Length in Binary Decision Diagrams by Spectral Methods</title><author>Keren, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-bd5acfde35cc396d25108106322c359d386ee16ea376ab174edf0c0eb2703e1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>APL (programming language)</topic><topic>Autocorrelation</topic><topic>Automatic synthesis</topic><topic>Boolean functions</topic><topic>Correlation</topic><topic>Criteria</topic><topic>Data structures</topic><topic>Decision trees</topic><topic>Input variables</topic><topic>Logic Design</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Minimization</topic><topic>Mutual information</topic><topic>Optimization</topic><topic>Reduction</topic><topic>Spectral methods</topic><topic>Studies</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keren, O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keren, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of Average Path Length in Binary Decision Diagrams by Spectral Methods</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>57</volume><issue>4</issue><spage>520</spage><epage>531</epage><pages>520-531</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>This paper deals with analytic methods for the calculation and reduction of the average path lengths (APLs) in binary decision diagrams (BDDs). Usually, information-theoretic measures and information-theoretic techniques are used to construct BDDs of minimal APLs. Specifically, the mutual information between a Boolean function and its variables and the Shannon-Fano prefix coding are utilized. This paper deals with the problem of the APL reduction by using spectral techniques. Particularly, methods based on the properties of the Walsh spectrum of a Boolean function and its autocorrelation function are discussed. It is shown that the APL is a linear function of the autocorrelation values, that is, the APL depends on the Boolean function's properties in the time domain (autocorrelation) rather on the Boolean function's properties in the frequency domain (Walsh spectrum). In addition, it is shown that information-theoretic criteria like the mutual information or the conditional entropy are equivalent to frequency-domain criteria. Consequently, existing information-theoretic approaches for APL reduction that are based on mutual-information criterion or the Walsh transform coefficients may derive a suboptimal APL. The representation of the APL as a function of the autocorrelation values opens a way to determine the optimal ordering of the input variables analytically. Two procedures for APL reduction by ordering and by using linear combinations of the input variables are presented: (1) minimization by using the autocorrelation values and (2) minimization by using the mutual information between the Boolean function and a linear function of the input variables. The time-domain approach may derive a linearized BDD of a lower APL, whereas the information-theoretic approach has a lower computational complexity with comparable performance. Experimental results show the efficiency of the suggested techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2007.70811</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2008-04, Vol.57 (4), p.520-531 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_proquest_miscellaneous_903637141 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms APL (programming language) Autocorrelation Automatic synthesis Boolean functions Correlation Criteria Data structures Decision trees Input variables Logic Design Mathematical analysis Mathematical models Minimization Mutual information Optimization Reduction Spectral methods Studies Vectors |
title | Reduction of Average Path Length in Binary Decision Diagrams by Spectral Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20Average%20Path%20Length%20in%20Binary%20Decision%20Diagrams%20by%20Spectral%20Methods&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Keren,%20O.&rft.date=2008-04-01&rft.volume=57&rft.issue=4&rft.spage=520&rft.epage=531&rft.pages=520-531&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2007.70811&rft_dat=%3Cproquest_RIE%3E2324084491%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862561926&rft_id=info:pmid/&rft_ieee_id=4358255&rfr_iscdi=true |