Residential self-selection effects in an activity time-use behavior model

This study presents a joint model system of residential location and activity time-use choices that considers a comprehensive set of activity-travel environment (ATE) variables, as well as socio-demographic variables, as determinants of individual weekday activity time-use choices. The model system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part B: methodological 2009-08, Vol.43 (7), p.729-748
Hauptverfasser: Pinjari, Abdul Rawoof, Bhat, Chandra R., Hensher, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a joint model system of residential location and activity time-use choices that considers a comprehensive set of activity-travel environment (ATE) variables, as well as socio-demographic variables, as determinants of individual weekday activity time-use choices. The model system takes the form of a joint mixed Multinomial Logit–Multiple Discrete-Continuous Extreme Value (MNL–MDCEV) structure that (a) accommodates differential sensitivity to the ATE attributes due to both observed and unobserved individual-related attributes, and (b) controls for the self-selection of individuals into neighborhoods due to both observed and unobserved individual-related factors. The joint model system is estimated on a sample of 2793 households and individuals residing in Alameda County in the San Francisco Bay Area. The model results indicate the significant presence of residential self-selection effects due to both observed and unobserved individual-related factors. For instance, individuals from households with more bicycles are associated with a higher preference for out-of-home physically active pure recreational travel pursuits (such as bicycling around in the neighborhood). These same individuals locate into neighborhoods with good bicycling facilities. This leads to a non-causal association between individuals’ time investment in out-of-home physically active pure recreational travel and bicycling facilities in their residential neighborhoods. Thus, ignoring the effect of bicycle ownership in the time-use model, would lead to an inflated estimate of the effect of bicycling facility density on the time invested in physically active pure recreational travel. Similarly, there are significant unobserved individual factors that lead to a high preference for physically active recreational activities and also make individuals locate in areas with good bicycling facilities. When such unobserved factors were controlled by the proposed joint residential location and time-use model, the impact of bicycling facility density on out-of-home physically active recreational activities ceased to be statistically significant (from being statistically significant in the independent time-use model). These results highlight the need to control for residential self-selection effects when estimating the effects of the activity-travel environment on activity time-use choices.
ISSN:0191-2615
1879-2367
DOI:10.1016/j.trb.2009.02.002