Polymeric heart valves: new materials, emerging hopes

Heart valve (HV) replacements are among the most widely used cardiovascular devices and are in rising demand. Currently, clinically available devices are restricted to slightly modified mechanical and bioprosthetic valves. Polymeric HVs could represent an attractive alternative to the existing prost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biotechnology (Regular ed.) 2009-06, Vol.27 (6), p.359-367
Hauptverfasser: Ghanbari, Hossein, Viatge, Helene, Kidane, Asmeret G, Burriesci, Gaetano, Tavakoli, Mehdi, Seifalian, Alexander M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 367
container_issue 6
container_start_page 359
container_title Trends in biotechnology (Regular ed.)
container_volume 27
creator Ghanbari, Hossein
Viatge, Helene
Kidane, Asmeret G
Burriesci, Gaetano
Tavakoli, Mehdi
Seifalian, Alexander M
description Heart valve (HV) replacements are among the most widely used cardiovascular devices and are in rising demand. Currently, clinically available devices are restricted to slightly modified mechanical and bioprosthetic valves. Polymeric HVs could represent an attractive alternative to the existing prostheses, merging the superior durability of mechanical valves and the enhanced haemodynamic function of bioprosthetic valves. After early unsatisfactory clinical results, polymeric HVs did not reach commercialization, mainly owing to their limited durability. Recent advances in polymers, nanomaterials and surface modification techniques together with the emergence of novel biomaterials have resulted in improved biocompatibility and biostability. Advances in HV design and fabrication methods could also lead to polymeric HVs that are suitable for long-lasting implantation. Considering all these progresses, it is likely that the new generation of polymeric HVs will find successful long-term clinical applications in future.
doi_str_mv 10.1016/j.tibtech.2009.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903634787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0167779909000766</els_id><sourcerecordid>34456676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-fd14c01e6b3e01afe1e558596b032f9bd4bf0a4218b876b8b7e44fc90275c0e93</originalsourceid><addsrcrecordid>eNqF0luL1DAUB_AgijuufgS1IOqLrSf3xgdFFm-woLDuc0jT05mMnXZMOiPz7c0wxYV9cJ8CyS8nl_8h5CmFigJVb9fVFJoJ_apiAKYCXgGwe2RBa21KDkbdJ4vsdKm1MWfkUUprAODa0IfkjBoBShi9IPLH2B82GIMvVujiVOxdv8f0rhjwT7FxU15xfXpTYDbLMCyL1bjF9Jg86PI0PpnHc3L9-dPPi6_l5fcv3y4-XpZeGjGVXUuFB4qq4QjUdUhRyloa1QBnnWla0XTgBKN1U2vV1I1GITpvgGnpAQ0_J69Pdbdx_L3DNNlNSB773g047pI1wBUXutZZvvqv5EJIpbS6EzJQIADqDF_cgutxF4f8XEslSC4Z1yIreVI-jilF7Ow2ho2LB0vBHoOyazsHZY9BWeA2B5X3PZur75oNtje75mQyeDkDl7zru-gGH9I_x6hUjDGe3fOT69xo3TJmc33FgPJ8NueC0yw-nATmpPYBo00-4OCxDRH9ZNsx3HnZ97cq-D4MIV_rFx4w3fyLTcyCvTr23bHtwOSW00rxv9F6zxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505352374</pqid></control><display><type>article</type><title>Polymeric heart valves: new materials, emerging hopes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Ghanbari, Hossein ; Viatge, Helene ; Kidane, Asmeret G ; Burriesci, Gaetano ; Tavakoli, Mehdi ; Seifalian, Alexander M</creator><creatorcontrib>Ghanbari, Hossein ; Viatge, Helene ; Kidane, Asmeret G ; Burriesci, Gaetano ; Tavakoli, Mehdi ; Seifalian, Alexander M</creatorcontrib><description>Heart valve (HV) replacements are among the most widely used cardiovascular devices and are in rising demand. Currently, clinically available devices are restricted to slightly modified mechanical and bioprosthetic valves. Polymeric HVs could represent an attractive alternative to the existing prostheses, merging the superior durability of mechanical valves and the enhanced haemodynamic function of bioprosthetic valves. After early unsatisfactory clinical results, polymeric HVs did not reach commercialization, mainly owing to their limited durability. Recent advances in polymers, nanomaterials and surface modification techniques together with the emergence of novel biomaterials have resulted in improved biocompatibility and biostability. Advances in HV design and fabrication methods could also lead to polymeric HVs that are suitable for long-lasting implantation. Considering all these progresses, it is likely that the new generation of polymeric HVs will find successful long-term clinical applications in future.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2009.03.002</identifier><identifier>PMID: 19406497</identifier><identifier>CODEN: TRBIDM</identifier><language>eng</language><publisher>Cambridge, MA: Elsevier Ltd</publisher><subject>Biocompatible Materials ; Biological and medical sciences ; Biomaterials ; Cell adhesion &amp; migration ; Equipment Design ; Fabrication ; Heart Valve Prosthesis ; Internal Medicine ; Materials Testing ; Medical sciences ; Mortality ; Nanostructures ; Nanotechnology ; Polymers ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Studies ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Tissue Scaffolds</subject><ispartof>Trends in biotechnology (Regular ed.), 2009-06, Vol.27 (6), p.359-367</ispartof><rights>Elsevier Ltd</rights><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Limited Jun 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-fd14c01e6b3e01afe1e558596b032f9bd4bf0a4218b876b8b7e44fc90275c0e93</citedby><cites>FETCH-LOGICAL-c594t-fd14c01e6b3e01afe1e558596b032f9bd4bf0a4218b876b8b7e44fc90275c0e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1505352374?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21562223$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19406497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghanbari, Hossein</creatorcontrib><creatorcontrib>Viatge, Helene</creatorcontrib><creatorcontrib>Kidane, Asmeret G</creatorcontrib><creatorcontrib>Burriesci, Gaetano</creatorcontrib><creatorcontrib>Tavakoli, Mehdi</creatorcontrib><creatorcontrib>Seifalian, Alexander M</creatorcontrib><title>Polymeric heart valves: new materials, emerging hopes</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Heart valve (HV) replacements are among the most widely used cardiovascular devices and are in rising demand. Currently, clinically available devices are restricted to slightly modified mechanical and bioprosthetic valves. Polymeric HVs could represent an attractive alternative to the existing prostheses, merging the superior durability of mechanical valves and the enhanced haemodynamic function of bioprosthetic valves. After early unsatisfactory clinical results, polymeric HVs did not reach commercialization, mainly owing to their limited durability. Recent advances in polymers, nanomaterials and surface modification techniques together with the emergence of novel biomaterials have resulted in improved biocompatibility and biostability. Advances in HV design and fabrication methods could also lead to polymeric HVs that are suitable for long-lasting implantation. Considering all these progresses, it is likely that the new generation of polymeric HVs will find successful long-term clinical applications in future.</description><subject>Biocompatible Materials</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Cell adhesion &amp; migration</subject><subject>Equipment Design</subject><subject>Fabrication</subject><subject>Heart Valve Prosthesis</subject><subject>Internal Medicine</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Mortality</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Polymers</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Studies</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Tissue Scaffolds</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0luL1DAUB_AgijuufgS1IOqLrSf3xgdFFm-woLDuc0jT05mMnXZMOiPz7c0wxYV9cJ8CyS8nl_8h5CmFigJVb9fVFJoJ_apiAKYCXgGwe2RBa21KDkbdJ4vsdKm1MWfkUUprAODa0IfkjBoBShi9IPLH2B82GIMvVujiVOxdv8f0rhjwT7FxU15xfXpTYDbLMCyL1bjF9Jg86PI0PpnHc3L9-dPPi6_l5fcv3y4-XpZeGjGVXUuFB4qq4QjUdUhRyloa1QBnnWla0XTgBKN1U2vV1I1GITpvgGnpAQ0_J69Pdbdx_L3DNNlNSB773g047pI1wBUXutZZvvqv5EJIpbS6EzJQIADqDF_cgutxF4f8XEslSC4Z1yIreVI-jilF7Ow2ho2LB0vBHoOyazsHZY9BWeA2B5X3PZur75oNtje75mQyeDkDl7zru-gGH9I_x6hUjDGe3fOT69xo3TJmc33FgPJ8NueC0yw-nATmpPYBo00-4OCxDRH9ZNsx3HnZ97cq-D4MIV_rFx4w3fyLTcyCvTr23bHtwOSW00rxv9F6zxo</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Ghanbari, Hossein</creator><creator>Viatge, Helene</creator><creator>Kidane, Asmeret G</creator><creator>Burriesci, Gaetano</creator><creator>Tavakoli, Mehdi</creator><creator>Seifalian, Alexander M</creator><general>Elsevier Ltd</general><general>[London]: Elsevier Science</general><general>Cell Press</general><general>Elsevier Limited</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090601</creationdate><title>Polymeric heart valves: new materials, emerging hopes</title><author>Ghanbari, Hossein ; Viatge, Helene ; Kidane, Asmeret G ; Burriesci, Gaetano ; Tavakoli, Mehdi ; Seifalian, Alexander M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-fd14c01e6b3e01afe1e558596b032f9bd4bf0a4218b876b8b7e44fc90275c0e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biocompatible Materials</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Cell adhesion &amp; migration</topic><topic>Equipment Design</topic><topic>Fabrication</topic><topic>Heart Valve Prosthesis</topic><topic>Internal Medicine</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Mortality</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Polymers</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Studies</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghanbari, Hossein</creatorcontrib><creatorcontrib>Viatge, Helene</creatorcontrib><creatorcontrib>Kidane, Asmeret G</creatorcontrib><creatorcontrib>Burriesci, Gaetano</creatorcontrib><creatorcontrib>Tavakoli, Mehdi</creatorcontrib><creatorcontrib>Seifalian, Alexander M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanbari, Hossein</au><au>Viatge, Helene</au><au>Kidane, Asmeret G</au><au>Burriesci, Gaetano</au><au>Tavakoli, Mehdi</au><au>Seifalian, Alexander M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymeric heart valves: new materials, emerging hopes</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>27</volume><issue>6</issue><spage>359</spage><epage>367</epage><pages>359-367</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><coden>TRBIDM</coden><abstract>Heart valve (HV) replacements are among the most widely used cardiovascular devices and are in rising demand. Currently, clinically available devices are restricted to slightly modified mechanical and bioprosthetic valves. Polymeric HVs could represent an attractive alternative to the existing prostheses, merging the superior durability of mechanical valves and the enhanced haemodynamic function of bioprosthetic valves. After early unsatisfactory clinical results, polymeric HVs did not reach commercialization, mainly owing to their limited durability. Recent advances in polymers, nanomaterials and surface modification techniques together with the emergence of novel biomaterials have resulted in improved biocompatibility and biostability. Advances in HV design and fabrication methods could also lead to polymeric HVs that are suitable for long-lasting implantation. Considering all these progresses, it is likely that the new generation of polymeric HVs will find successful long-term clinical applications in future.</abstract><cop>Cambridge, MA</cop><pub>Elsevier Ltd</pub><pmid>19406497</pmid><doi>10.1016/j.tibtech.2009.03.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7799
ispartof Trends in biotechnology (Regular ed.), 2009-06, Vol.27 (6), p.359-367
issn 0167-7799
1879-3096
language eng
recordid cdi_proquest_miscellaneous_903634787
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Biocompatible Materials
Biological and medical sciences
Biomaterials
Cell adhesion & migration
Equipment Design
Fabrication
Heart Valve Prosthesis
Internal Medicine
Materials Testing
Medical sciences
Mortality
Nanostructures
Nanotechnology
Polymers
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Studies
Technology. Biomaterials. Equipments. Material. Instrumentation
Tissue Scaffolds
title Polymeric heart valves: new materials, emerging hopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymeric%20heart%20valves:%20new%20materials,%20emerging%20hopes&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Ghanbari,%20Hossein&rft.date=2009-06-01&rft.volume=27&rft.issue=6&rft.spage=359&rft.epage=367&rft.pages=359-367&rft.issn=0167-7799&rft.eissn=1879-3096&rft.coden=TRBIDM&rft_id=info:doi/10.1016/j.tibtech.2009.03.002&rft_dat=%3Cproquest_cross%3E34456676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505352374&rft_id=info:pmid/19406497&rft_els_id=1_s2_0_S0167779909000766&rfr_iscdi=true