Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium

Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2009-06, Vol.52 (13), p.3353-3363
Hauptverfasser: Moraga, Nelson O., Rosas, César E., Bubnovich, Valeri I., Tobar, José R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3363
container_issue 13
container_start_page 3353
container_title International journal of heat and mass transfer
container_volume 52
creator Moraga, Nelson O.
Rosas, César E.
Bubnovich, Valeri I.
Tobar, José R.
description Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100 ⩽ Re ⩽ 2000, keeping constant the excess air ψ = 4.88, the porosity ε = 0.4, and the air–fuel mixture inlet speed Uo = 0.43 m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number.
doi_str_mv 10.1016/j.ijheatmasstransfer.2009.01.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903633463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931009000519</els_id><sourcerecordid>34445351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-ee58d3828b11b1d7915493c8a8983d363ef063ffab0f0a1861eb3d1822ecf34d3</originalsourceid><addsrcrecordid>eNqNkcuqFDEQhoMoOI6-QzZeNj2mOt2Z9E45eOWAG886pJOKk6EvYyrt8ex8B9_QJzHNHN0IKiSEwFdf_VQx9gzEDgSo58ddPB7Q5tES5WQnCph2tRDdTkA54g7bgN53VQ26u8s2QsC-6iSI--wB0XH9ikZtGF1NlNH6Gx6GJXo-ojvYKTridvJ8bcB_2TnlpXBx4pb7eekHrPLSI7cx_fj23c1jv1Ce07kIv66eT6XqOuYDP81pXqjYfVzGh-xesAPho9t3y65ev_p48ba6_PDm3cXLy8o1SuUKsdVe6lr3AD34fQdt00mnre609FJJDELJEGwvgrCgFWAvPei6Rhdk4-WWPT17T2n-vCBlM0ZyOAx2wpLGdKJIZFPulj35KymbpmllC_8E65JIlQQFfHEGXZqJEgZzSnG06caAMOsCzdH8uUCzLtAIKEcUxePbXpacHUJhXKTfnhraWmlYM70_c1hm-SUWC7mIkyuzTuiy8XP8_6Y_AVU4wGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20636822</pqid></control><display><type>article</type><title>Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium</title><source>Access via ScienceDirect (Elsevier)</source><creator>Moraga, Nelson O. ; Rosas, César E. ; Bubnovich, Valeri I. ; Tobar, José R.</creator><creatorcontrib>Moraga, Nelson O. ; Rosas, César E. ; Bubnovich, Valeri I. ; Tobar, José R.</creatorcontrib><description>Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100 ⩽ Re ⩽ 2000, keeping constant the excess air ψ = 4.88, the porosity ε = 0.4, and the air–fuel mixture inlet speed Uo = 0.43 m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2009.01.010</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>2D heat transfer ; Applied sciences ; Cylindrical porous combustor ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Finite volume simulation ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Theoretical studies. Data and constants. Metering</subject><ispartof>International journal of heat and mass transfer, 2009-06, Vol.52 (13), p.3353-3363</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-ee58d3828b11b1d7915493c8a8983d363ef063ffab0f0a1861eb3d1822ecf34d3</citedby><cites>FETCH-LOGICAL-c466t-ee58d3828b11b1d7915493c8a8983d363ef063ffab0f0a1861eb3d1822ecf34d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.01.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21526811$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moraga, Nelson O.</creatorcontrib><creatorcontrib>Rosas, César E.</creatorcontrib><creatorcontrib>Bubnovich, Valeri I.</creatorcontrib><creatorcontrib>Tobar, José R.</creatorcontrib><title>Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium</title><title>International journal of heat and mass transfer</title><description>Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100 ⩽ Re ⩽ 2000, keeping constant the excess air ψ = 4.88, the porosity ε = 0.4, and the air–fuel mixture inlet speed Uo = 0.43 m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number.</description><subject>2D heat transfer</subject><subject>Applied sciences</subject><subject>Cylindrical porous combustor</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Finite volume simulation</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkcuqFDEQhoMoOI6-QzZeNj2mOt2Z9E45eOWAG886pJOKk6EvYyrt8ex8B9_QJzHNHN0IKiSEwFdf_VQx9gzEDgSo58ddPB7Q5tES5WQnCph2tRDdTkA54g7bgN53VQ26u8s2QsC-6iSI--wB0XH9ikZtGF1NlNH6Gx6GJXo-ojvYKTridvJ8bcB_2TnlpXBx4pb7eekHrPLSI7cx_fj23c1jv1Ce07kIv66eT6XqOuYDP81pXqjYfVzGh-xesAPho9t3y65ev_p48ba6_PDm3cXLy8o1SuUKsdVe6lr3AD34fQdt00mnre609FJJDELJEGwvgrCgFWAvPei6Rhdk4-WWPT17T2n-vCBlM0ZyOAx2wpLGdKJIZFPulj35KymbpmllC_8E65JIlQQFfHEGXZqJEgZzSnG06caAMOsCzdH8uUCzLtAIKEcUxePbXpacHUJhXKTfnhraWmlYM70_c1hm-SUWC7mIkyuzTuiy8XP8_6Y_AVU4wGo</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Moraga, Nelson O.</creator><creator>Rosas, César E.</creator><creator>Bubnovich, Valeri I.</creator><creator>Tobar, José R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090601</creationdate><title>Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium</title><author>Moraga, Nelson O. ; Rosas, César E. ; Bubnovich, Valeri I. ; Tobar, José R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-ee58d3828b11b1d7915493c8a8983d363ef063ffab0f0a1861eb3d1822ecf34d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>2D heat transfer</topic><topic>Applied sciences</topic><topic>Cylindrical porous combustor</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Finite volume simulation</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moraga, Nelson O.</creatorcontrib><creatorcontrib>Rosas, César E.</creatorcontrib><creatorcontrib>Bubnovich, Valeri I.</creatorcontrib><creatorcontrib>Tobar, José R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moraga, Nelson O.</au><au>Rosas, César E.</au><au>Bubnovich, Valeri I.</au><au>Tobar, José R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>52</volume><issue>13</issue><spage>3353</spage><epage>3363</epage><pages>3353-3363</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100 ⩽ Re ⩽ 2000, keeping constant the excess air ψ = 4.88, the porosity ε = 0.4, and the air–fuel mixture inlet speed Uo = 0.43 m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2009.01.010</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2009-06, Vol.52 (13), p.3353-3363
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_903633463
source Access via ScienceDirect (Elsevier)
subjects 2D heat transfer
Applied sciences
Cylindrical porous combustor
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Finite volume simulation
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
Theoretical studies. Data and constants. Metering
title Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20fluid%20mechanics%20and%20heat%20transfer%20study%20in%20a%20double-tube%20air%E2%80%93combustor%20heat%20exchanger%20with%20porous%20medium&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Moraga,%20Nelson%20O.&rft.date=2009-06-01&rft.volume=52&rft.issue=13&rft.spage=3353&rft.epage=3363&rft.pages=3353-3363&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2009.01.010&rft_dat=%3Cproquest_cross%3E34445351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20636822&rft_id=info:pmid/&rft_els_id=S0017931009000519&rfr_iscdi=true