Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium
Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations o...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2009-06, Vol.52 (13), p.3353-3363 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3363 |
---|---|
container_issue | 13 |
container_start_page | 3353 |
container_title | International journal of heat and mass transfer |
container_volume | 52 |
creator | Moraga, Nelson O. Rosas, César E. Bubnovich, Valeri I. Tobar, José R. |
description | Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100
⩽
Re
⩽
2000, keeping constant the excess air
ψ
=
4.88, the porosity
ε
=
0.4, and the air–fuel mixture inlet speed
Uo
=
0.43
m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2009.01.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903633463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931009000519</els_id><sourcerecordid>34445351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-ee58d3828b11b1d7915493c8a8983d363ef063ffab0f0a1861eb3d1822ecf34d3</originalsourceid><addsrcrecordid>eNqNkcuqFDEQhoMoOI6-QzZeNj2mOt2Z9E45eOWAG886pJOKk6EvYyrt8ex8B9_QJzHNHN0IKiSEwFdf_VQx9gzEDgSo58ddPB7Q5tES5WQnCph2tRDdTkA54g7bgN53VQ26u8s2QsC-6iSI--wB0XH9ikZtGF1NlNH6Gx6GJXo-ojvYKTridvJ8bcB_2TnlpXBx4pb7eekHrPLSI7cx_fj23c1jv1Ce07kIv66eT6XqOuYDP81pXqjYfVzGh-xesAPho9t3y65ev_p48ba6_PDm3cXLy8o1SuUKsdVe6lr3AD34fQdt00mnre609FJJDELJEGwvgrCgFWAvPei6Rhdk4-WWPT17T2n-vCBlM0ZyOAx2wpLGdKJIZFPulj35KymbpmllC_8E65JIlQQFfHEGXZqJEgZzSnG06caAMOsCzdH8uUCzLtAIKEcUxePbXpacHUJhXKTfnhraWmlYM70_c1hm-SUWC7mIkyuzTuiy8XP8_6Y_AVU4wGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20636822</pqid></control><display><type>article</type><title>Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium</title><source>Access via ScienceDirect (Elsevier)</source><creator>Moraga, Nelson O. ; Rosas, César E. ; Bubnovich, Valeri I. ; Tobar, José R.</creator><creatorcontrib>Moraga, Nelson O. ; Rosas, César E. ; Bubnovich, Valeri I. ; Tobar, José R.</creatorcontrib><description>Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100
⩽
Re
⩽
2000, keeping constant the excess air
ψ
=
4.88, the porosity
ε
=
0.4, and the air–fuel mixture inlet speed
Uo
=
0.43
m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2009.01.010</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>2D heat transfer ; Applied sciences ; Cylindrical porous combustor ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Finite volume simulation ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Theoretical studies. Data and constants. Metering</subject><ispartof>International journal of heat and mass transfer, 2009-06, Vol.52 (13), p.3353-3363</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-ee58d3828b11b1d7915493c8a8983d363ef063ffab0f0a1861eb3d1822ecf34d3</citedby><cites>FETCH-LOGICAL-c466t-ee58d3828b11b1d7915493c8a8983d363ef063ffab0f0a1861eb3d1822ecf34d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.01.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21526811$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moraga, Nelson O.</creatorcontrib><creatorcontrib>Rosas, César E.</creatorcontrib><creatorcontrib>Bubnovich, Valeri I.</creatorcontrib><creatorcontrib>Tobar, José R.</creatorcontrib><title>Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium</title><title>International journal of heat and mass transfer</title><description>Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100
⩽
Re
⩽
2000, keeping constant the excess air
ψ
=
4.88, the porosity
ε
=
0.4, and the air–fuel mixture inlet speed
Uo
=
0.43
m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number.</description><subject>2D heat transfer</subject><subject>Applied sciences</subject><subject>Cylindrical porous combustor</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Finite volume simulation</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkcuqFDEQhoMoOI6-QzZeNj2mOt2Z9E45eOWAG886pJOKk6EvYyrt8ex8B9_QJzHNHN0IKiSEwFdf_VQx9gzEDgSo58ddPB7Q5tES5WQnCph2tRDdTkA54g7bgN53VQ26u8s2QsC-6iSI--wB0XH9ikZtGF1NlNH6Gx6GJXo-ojvYKTridvJ8bcB_2TnlpXBx4pb7eekHrPLSI7cx_fj23c1jv1Ce07kIv66eT6XqOuYDP81pXqjYfVzGh-xesAPho9t3y65ev_p48ba6_PDm3cXLy8o1SuUKsdVe6lr3AD34fQdt00mnre609FJJDELJEGwvgrCgFWAvPei6Rhdk4-WWPT17T2n-vCBlM0ZyOAx2wpLGdKJIZFPulj35KymbpmllC_8E65JIlQQFfHEGXZqJEgZzSnG06caAMOsCzdH8uUCzLtAIKEcUxePbXpacHUJhXKTfnhraWmlYM70_c1hm-SUWC7mIkyuzTuiy8XP8_6Y_AVU4wGo</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Moraga, Nelson O.</creator><creator>Rosas, César E.</creator><creator>Bubnovich, Valeri I.</creator><creator>Tobar, José R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090601</creationdate><title>Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium</title><author>Moraga, Nelson O. ; Rosas, César E. ; Bubnovich, Valeri I. ; Tobar, José R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-ee58d3828b11b1d7915493c8a8983d363ef063ffab0f0a1861eb3d1822ecf34d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>2D heat transfer</topic><topic>Applied sciences</topic><topic>Cylindrical porous combustor</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Finite volume simulation</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moraga, Nelson O.</creatorcontrib><creatorcontrib>Rosas, César E.</creatorcontrib><creatorcontrib>Bubnovich, Valeri I.</creatorcontrib><creatorcontrib>Tobar, José R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moraga, Nelson O.</au><au>Rosas, César E.</au><au>Bubnovich, Valeri I.</au><au>Tobar, José R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>52</volume><issue>13</issue><spage>3353</spage><epage>3363</epage><pages>3353-3363</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100
⩽
Re
⩽
2000, keeping constant the excess air
ψ
=
4.88, the porosity
ε
=
0.4, and the air–fuel mixture inlet speed
Uo
=
0.43
m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2009.01.010</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2009-06, Vol.52 (13), p.3353-3363 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_903633463 |
source | Access via ScienceDirect (Elsevier) |
subjects | 2D heat transfer Applied sciences Cylindrical porous combustor Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Finite volume simulation Heat exchangers (included heat transformers, condensers, cooling towers) Heat transfer Theoretical studies. Data and constants. Metering |
title | Unsteady fluid mechanics and heat transfer study in a double-tube air–combustor heat exchanger with porous medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20fluid%20mechanics%20and%20heat%20transfer%20study%20in%20a%20double-tube%20air%E2%80%93combustor%20heat%20exchanger%20with%20porous%20medium&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Moraga,%20Nelson%20O.&rft.date=2009-06-01&rft.volume=52&rft.issue=13&rft.spage=3353&rft.epage=3363&rft.pages=3353-3363&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2009.01.010&rft_dat=%3Cproquest_cross%3E34445351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20636822&rft_id=info:pmid/&rft_els_id=S0017931009000519&rfr_iscdi=true |