Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions

We report the influences of quantum dot (QD) shape on the lasing characteristics such as threshold current, slope efficiency, and wavelength stability. The average heights of the shape-engineered InAs/InAlGaAs QDs (SEQDs) and the conventionally-grown Stranski-Krastanov InAs QDs (CQD) were 10 ± 0.5 a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2009-05, Vol.517 (14), p.3983-3986
Hauptverfasser: Jo, Byounggu, Yang, Youngsin, Kim, Jaesu, Ko, Myoungkuk, Lee, Kwang Jae, Lee, Cheul-Ro, Kim, Jin Soo, Choi, Byoung Seok, Oh, Dae Kon, Leem, Jae-Young, Kim, Jong Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3986
container_issue 14
container_start_page 3983
container_title Thin solid films
container_volume 517
creator Jo, Byounggu
Yang, Youngsin
Kim, Jaesu
Ko, Myoungkuk
Lee, Kwang Jae
Lee, Cheul-Ro
Kim, Jin Soo
Choi, Byoung Seok
Oh, Dae Kon
Leem, Jae-Young
Kim, Jong Su
description We report the influences of quantum dot (QD) shape on the lasing characteristics such as threshold current, slope efficiency, and wavelength stability. The average heights of the shape-engineered InAs/InAlGaAs QDs (SEQDs) and the conventionally-grown Stranski-Krastanov InAs QDs (CQD) were 10 ± 0.5 and 2.5 ± 0.5 nm, respectively. For the cavity length of 0.5 mm, the threshold current of the laser diodes (LDs) with the InAs/InAlGaAs SEQDs as an active layer (SEQD-LD) was decreased by 3.6 times smaller than that of the LDs with the InAs CQDs (CQD-LD). Also the slope efficiency for the SEQD-LD was increased to 0.15 from 0.087 W/A of the CQD-LD. While the lasing wavelength of the CQD-LD was red-shifted by 0.032 μm with increasing cavity length from 0.5 to 0.75 mm, the lasing emission of the SEQD-LD was red-shifted only by 0.012 μm with increasing cavity length from 0.5 to 1.5 mm. From these results, the gain of the QDLDs was enhanced by increasing the height of the QDs due to the enhancement in the confinement of the carrier wave-functions.
doi_str_mv 10.1016/j.tsf.2009.01.110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903632912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609009001928</els_id><sourcerecordid>903632912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-ee0fcb7e3a0dde4be4a99adb6a4b72f519933ecfe770aed0e18a923e5b6e93883</originalsourceid><addsrcrecordid>eNp9kcFqHDEMhk1poNukD9CbL21PM5HHk_GankpIm0Cgl_ZsNB7NrhevvbE9G_L2cdiQY04S4pME_8fYVwGtADFc7tqS57YD0C2IVgj4wFZirXTTKSk-shVAD80AGj6xzznvAEB0nVyxchO2GCztKRTuAi9b4husTZz5w4KhLHs-xcI9Zkp8fKqMTYTZhQ2PR0oeD3VUaJPQ85HKI1Hg5MmWFAPHMPFt9MQf8UjNvARbXAz5gp3N6DN9ea3n7P_vm3_Xt8393z9317_uGys1lIYIZjsqkgjTRP1IPWqN0zhgP6puvhJaS0l2JqUAaQISa9SdpKtxIC3Xa3nOfpzuHlJ8WCgXs3fZkvcYKC7ZaJCD7LToKvn9XVL2fQ9aiwqKE2hTzDnRbA7J7TE9GQHmxYTZmWrCvJgwIEw1UXe-vR7HbNHPqQbu8ttiJ5SQClTlfp44qpkcHSWTraMqZ3KpBmqm6N758gwlh6DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34440991</pqid></control><display><type>article</type><title>Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jo, Byounggu ; Yang, Youngsin ; Kim, Jaesu ; Ko, Myoungkuk ; Lee, Kwang Jae ; Lee, Cheul-Ro ; Kim, Jin Soo ; Choi, Byoung Seok ; Oh, Dae Kon ; Leem, Jae-Young ; Kim, Jong Su</creator><creatorcontrib>Jo, Byounggu ; Yang, Youngsin ; Kim, Jaesu ; Ko, Myoungkuk ; Lee, Kwang Jae ; Lee, Cheul-Ro ; Kim, Jin Soo ; Choi, Byoung Seok ; Oh, Dae Kon ; Leem, Jae-Young ; Kim, Jong Su</creatorcontrib><description>We report the influences of quantum dot (QD) shape on the lasing characteristics such as threshold current, slope efficiency, and wavelength stability. The average heights of the shape-engineered InAs/InAlGaAs QDs (SEQDs) and the conventionally-grown Stranski-Krastanov InAs QDs (CQD) were 10 ± 0.5 and 2.5 ± 0.5 nm, respectively. For the cavity length of 0.5 mm, the threshold current of the laser diodes (LDs) with the InAs/InAlGaAs SEQDs as an active layer (SEQD-LD) was decreased by 3.6 times smaller than that of the LDs with the InAs CQDs (CQD-LD). Also the slope efficiency for the SEQD-LD was increased to 0.15 from 0.087 W/A of the CQD-LD. While the lasing wavelength of the CQD-LD was red-shifted by 0.032 μm with increasing cavity length from 0.5 to 0.75 mm, the lasing emission of the SEQD-LD was red-shifted only by 0.012 μm with increasing cavity length from 0.5 to 1.5 mm. From these results, the gain of the QDLDs was enhanced by increasing the height of the QDs due to the enhancement in the confinement of the carrier wave-functions.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2009.01.110</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carrier confinement ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Laser diode ; Lasers ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Optics ; Other semiconductors ; Other topics in nanoscale materials and structures ; Physics ; Quantum dot ; Quantum dots ; Semiconductor lasers; laser diodes ; Specific materials</subject><ispartof>Thin solid films, 2009-05, Vol.517 (14), p.3983-3986</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-ee0fcb7e3a0dde4be4a99adb6a4b72f519933ecfe770aed0e18a923e5b6e93883</citedby><cites>FETCH-LOGICAL-c390t-ee0fcb7e3a0dde4be4a99adb6a4b72f519933ecfe770aed0e18a923e5b6e93883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2009.01.110$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21713707$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Byounggu</creatorcontrib><creatorcontrib>Yang, Youngsin</creatorcontrib><creatorcontrib>Kim, Jaesu</creatorcontrib><creatorcontrib>Ko, Myoungkuk</creatorcontrib><creatorcontrib>Lee, Kwang Jae</creatorcontrib><creatorcontrib>Lee, Cheul-Ro</creatorcontrib><creatorcontrib>Kim, Jin Soo</creatorcontrib><creatorcontrib>Choi, Byoung Seok</creatorcontrib><creatorcontrib>Oh, Dae Kon</creatorcontrib><creatorcontrib>Leem, Jae-Young</creatorcontrib><creatorcontrib>Kim, Jong Su</creatorcontrib><title>Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions</title><title>Thin solid films</title><description>We report the influences of quantum dot (QD) shape on the lasing characteristics such as threshold current, slope efficiency, and wavelength stability. The average heights of the shape-engineered InAs/InAlGaAs QDs (SEQDs) and the conventionally-grown Stranski-Krastanov InAs QDs (CQD) were 10 ± 0.5 and 2.5 ± 0.5 nm, respectively. For the cavity length of 0.5 mm, the threshold current of the laser diodes (LDs) with the InAs/InAlGaAs SEQDs as an active layer (SEQD-LD) was decreased by 3.6 times smaller than that of the LDs with the InAs CQDs (CQD-LD). Also the slope efficiency for the SEQD-LD was increased to 0.15 from 0.087 W/A of the CQD-LD. While the lasing wavelength of the CQD-LD was red-shifted by 0.032 μm with increasing cavity length from 0.5 to 0.75 mm, the lasing emission of the SEQD-LD was red-shifted only by 0.012 μm with increasing cavity length from 0.5 to 1.5 mm. From these results, the gain of the QDLDs was enhanced by increasing the height of the QDs due to the enhancement in the confinement of the carrier wave-functions.</description><subject>Carrier confinement</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laser diode</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optics</subject><subject>Other semiconductors</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Quantum dot</subject><subject>Quantum dots</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Specific materials</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kcFqHDEMhk1poNukD9CbL21PM5HHk_GankpIm0Cgl_ZsNB7NrhevvbE9G_L2cdiQY04S4pME_8fYVwGtADFc7tqS57YD0C2IVgj4wFZirXTTKSk-shVAD80AGj6xzznvAEB0nVyxchO2GCztKRTuAi9b4husTZz5w4KhLHs-xcI9Zkp8fKqMTYTZhQ2PR0oeD3VUaJPQ85HKI1Hg5MmWFAPHMPFt9MQf8UjNvARbXAz5gp3N6DN9ea3n7P_vm3_Xt8393z9317_uGys1lIYIZjsqkgjTRP1IPWqN0zhgP6puvhJaS0l2JqUAaQISa9SdpKtxIC3Xa3nOfpzuHlJ8WCgXs3fZkvcYKC7ZaJCD7LToKvn9XVL2fQ9aiwqKE2hTzDnRbA7J7TE9GQHmxYTZmWrCvJgwIEw1UXe-vR7HbNHPqQbu8ttiJ5SQClTlfp44qpkcHSWTraMqZ3KpBmqm6N758gwlh6DA</recordid><startdate>20090529</startdate><enddate>20090529</enddate><creator>Jo, Byounggu</creator><creator>Yang, Youngsin</creator><creator>Kim, Jaesu</creator><creator>Ko, Myoungkuk</creator><creator>Lee, Kwang Jae</creator><creator>Lee, Cheul-Ro</creator><creator>Kim, Jin Soo</creator><creator>Choi, Byoung Seok</creator><creator>Oh, Dae Kon</creator><creator>Leem, Jae-Young</creator><creator>Kim, Jong Su</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20090529</creationdate><title>Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions</title><author>Jo, Byounggu ; Yang, Youngsin ; Kim, Jaesu ; Ko, Myoungkuk ; Lee, Kwang Jae ; Lee, Cheul-Ro ; Kim, Jin Soo ; Choi, Byoung Seok ; Oh, Dae Kon ; Leem, Jae-Young ; Kim, Jong Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-ee0fcb7e3a0dde4be4a99adb6a4b72f519933ecfe770aed0e18a923e5b6e93883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Carrier confinement</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laser diode</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optics</topic><topic>Other semiconductors</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Quantum dot</topic><topic>Quantum dots</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Byounggu</creatorcontrib><creatorcontrib>Yang, Youngsin</creatorcontrib><creatorcontrib>Kim, Jaesu</creatorcontrib><creatorcontrib>Ko, Myoungkuk</creatorcontrib><creatorcontrib>Lee, Kwang Jae</creatorcontrib><creatorcontrib>Lee, Cheul-Ro</creatorcontrib><creatorcontrib>Kim, Jin Soo</creatorcontrib><creatorcontrib>Choi, Byoung Seok</creatorcontrib><creatorcontrib>Oh, Dae Kon</creatorcontrib><creatorcontrib>Leem, Jae-Young</creatorcontrib><creatorcontrib>Kim, Jong Su</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Byounggu</au><au>Yang, Youngsin</au><au>Kim, Jaesu</au><au>Ko, Myoungkuk</au><au>Lee, Kwang Jae</au><au>Lee, Cheul-Ro</au><au>Kim, Jin Soo</au><au>Choi, Byoung Seok</au><au>Oh, Dae Kon</au><au>Leem, Jae-Young</au><au>Kim, Jong Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions</atitle><jtitle>Thin solid films</jtitle><date>2009-05-29</date><risdate>2009</risdate><volume>517</volume><issue>14</issue><spage>3983</spage><epage>3986</epage><pages>3983-3986</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>We report the influences of quantum dot (QD) shape on the lasing characteristics such as threshold current, slope efficiency, and wavelength stability. The average heights of the shape-engineered InAs/InAlGaAs QDs (SEQDs) and the conventionally-grown Stranski-Krastanov InAs QDs (CQD) were 10 ± 0.5 and 2.5 ± 0.5 nm, respectively. For the cavity length of 0.5 mm, the threshold current of the laser diodes (LDs) with the InAs/InAlGaAs SEQDs as an active layer (SEQD-LD) was decreased by 3.6 times smaller than that of the LDs with the InAs CQDs (CQD-LD). Also the slope efficiency for the SEQD-LD was increased to 0.15 from 0.087 W/A of the CQD-LD. While the lasing wavelength of the CQD-LD was red-shifted by 0.032 μm with increasing cavity length from 0.5 to 0.75 mm, the lasing emission of the SEQD-LD was red-shifted only by 0.012 μm with increasing cavity length from 0.5 to 1.5 mm. From these results, the gain of the QDLDs was enhanced by increasing the height of the QDs due to the enhancement in the confinement of the carrier wave-functions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2009.01.110</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2009-05, Vol.517 (14), p.3983-3986
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_903632912
source Elsevier ScienceDirect Journals Complete
subjects Carrier confinement
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Laser diode
Lasers
Materials science
Nanoscale materials and structures: fabrication and characterization
Optics
Other semiconductors
Other topics in nanoscale materials and structures
Physics
Quantum dot
Quantum dots
Semiconductor lasers
laser diodes
Specific materials
title Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20in%20the%20gain%20of%20quantum%20dot%20laser%20by%20increasing%20overlap%20integral%20between%20electron%20and%20hole%20wave-functions&rft.jtitle=Thin%20solid%20films&rft.au=Jo,%20Byounggu&rft.date=2009-05-29&rft.volume=517&rft.issue=14&rft.spage=3983&rft.epage=3986&rft.pages=3983-3986&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2009.01.110&rft_dat=%3Cproquest_cross%3E903632912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34440991&rft_id=info:pmid/&rft_els_id=S0040609009001928&rfr_iscdi=true