Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions
We report the influences of quantum dot (QD) shape on the lasing characteristics such as threshold current, slope efficiency, and wavelength stability. The average heights of the shape-engineered InAs/InAlGaAs QDs (SEQDs) and the conventionally-grown Stranski-Krastanov InAs QDs (CQD) were 10 ± 0.5 a...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2009-05, Vol.517 (14), p.3983-3986 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3986 |
---|---|
container_issue | 14 |
container_start_page | 3983 |
container_title | Thin solid films |
container_volume | 517 |
creator | Jo, Byounggu Yang, Youngsin Kim, Jaesu Ko, Myoungkuk Lee, Kwang Jae Lee, Cheul-Ro Kim, Jin Soo Choi, Byoung Seok Oh, Dae Kon Leem, Jae-Young Kim, Jong Su |
description | We report the influences of quantum dot (QD) shape on the lasing characteristics such as threshold current, slope efficiency, and wavelength stability. The average heights of the shape-engineered InAs/InAlGaAs QDs (SEQDs) and the conventionally-grown Stranski-Krastanov InAs QDs (CQD) were 10
±
0.5 and 2.5
±
0.5 nm, respectively. For the cavity length of 0.5 mm, the threshold current of the laser diodes (LDs) with the InAs/InAlGaAs SEQDs as an active layer (SEQD-LD) was decreased by 3.6 times smaller than that of the LDs with the InAs CQDs (CQD-LD). Also the slope efficiency for the SEQD-LD was increased to 0.15 from 0.087 W/A of the CQD-LD. While the lasing wavelength of the CQD-LD was red-shifted by 0.032 μm with increasing cavity length from 0.5 to 0.75 mm, the lasing emission of the SEQD-LD was red-shifted only by 0.012 μm with increasing cavity length from 0.5 to 1.5 mm. From these results, the gain of the QDLDs was enhanced by increasing the height of the QDs due to the enhancement in the confinement of the carrier wave-functions. |
doi_str_mv | 10.1016/j.tsf.2009.01.110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903632912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609009001928</els_id><sourcerecordid>903632912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-ee0fcb7e3a0dde4be4a99adb6a4b72f519933ecfe770aed0e18a923e5b6e93883</originalsourceid><addsrcrecordid>eNp9kcFqHDEMhk1poNukD9CbL21PM5HHk_GankpIm0Cgl_ZsNB7NrhevvbE9G_L2cdiQY04S4pME_8fYVwGtADFc7tqS57YD0C2IVgj4wFZirXTTKSk-shVAD80AGj6xzznvAEB0nVyxchO2GCztKRTuAi9b4husTZz5w4KhLHs-xcI9Zkp8fKqMTYTZhQ2PR0oeD3VUaJPQ85HKI1Hg5MmWFAPHMPFt9MQf8UjNvARbXAz5gp3N6DN9ea3n7P_vm3_Xt8393z9317_uGys1lIYIZjsqkgjTRP1IPWqN0zhgP6puvhJaS0l2JqUAaQISa9SdpKtxIC3Xa3nOfpzuHlJ8WCgXs3fZkvcYKC7ZaJCD7LToKvn9XVL2fQ9aiwqKE2hTzDnRbA7J7TE9GQHmxYTZmWrCvJgwIEw1UXe-vR7HbNHPqQbu8ttiJ5SQClTlfp44qpkcHSWTraMqZ3KpBmqm6N758gwlh6DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34440991</pqid></control><display><type>article</type><title>Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jo, Byounggu ; Yang, Youngsin ; Kim, Jaesu ; Ko, Myoungkuk ; Lee, Kwang Jae ; Lee, Cheul-Ro ; Kim, Jin Soo ; Choi, Byoung Seok ; Oh, Dae Kon ; Leem, Jae-Young ; Kim, Jong Su</creator><creatorcontrib>Jo, Byounggu ; Yang, Youngsin ; Kim, Jaesu ; Ko, Myoungkuk ; Lee, Kwang Jae ; Lee, Cheul-Ro ; Kim, Jin Soo ; Choi, Byoung Seok ; Oh, Dae Kon ; Leem, Jae-Young ; Kim, Jong Su</creatorcontrib><description>We report the influences of quantum dot (QD) shape on the lasing characteristics such as threshold current, slope efficiency, and wavelength stability. The average heights of the shape-engineered InAs/InAlGaAs QDs (SEQDs) and the conventionally-grown Stranski-Krastanov InAs QDs (CQD) were 10
±
0.5 and 2.5
±
0.5 nm, respectively. For the cavity length of 0.5 mm, the threshold current of the laser diodes (LDs) with the InAs/InAlGaAs SEQDs as an active layer (SEQD-LD) was decreased by 3.6 times smaller than that of the LDs with the InAs CQDs (CQD-LD). Also the slope efficiency for the SEQD-LD was increased to 0.15 from 0.087 W/A of the CQD-LD. While the lasing wavelength of the CQD-LD was red-shifted by 0.032 μm with increasing cavity length from 0.5 to 0.75 mm, the lasing emission of the SEQD-LD was red-shifted only by 0.012 μm with increasing cavity length from 0.5 to 1.5 mm. From these results, the gain of the QDLDs was enhanced by increasing the height of the QDs due to the enhancement in the confinement of the carrier wave-functions.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2009.01.110</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carrier confinement ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Laser diode ; Lasers ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Optics ; Other semiconductors ; Other topics in nanoscale materials and structures ; Physics ; Quantum dot ; Quantum dots ; Semiconductor lasers; laser diodes ; Specific materials</subject><ispartof>Thin solid films, 2009-05, Vol.517 (14), p.3983-3986</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-ee0fcb7e3a0dde4be4a99adb6a4b72f519933ecfe770aed0e18a923e5b6e93883</citedby><cites>FETCH-LOGICAL-c390t-ee0fcb7e3a0dde4be4a99adb6a4b72f519933ecfe770aed0e18a923e5b6e93883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2009.01.110$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21713707$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Byounggu</creatorcontrib><creatorcontrib>Yang, Youngsin</creatorcontrib><creatorcontrib>Kim, Jaesu</creatorcontrib><creatorcontrib>Ko, Myoungkuk</creatorcontrib><creatorcontrib>Lee, Kwang Jae</creatorcontrib><creatorcontrib>Lee, Cheul-Ro</creatorcontrib><creatorcontrib>Kim, Jin Soo</creatorcontrib><creatorcontrib>Choi, Byoung Seok</creatorcontrib><creatorcontrib>Oh, Dae Kon</creatorcontrib><creatorcontrib>Leem, Jae-Young</creatorcontrib><creatorcontrib>Kim, Jong Su</creatorcontrib><title>Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions</title><title>Thin solid films</title><description>We report the influences of quantum dot (QD) shape on the lasing characteristics such as threshold current, slope efficiency, and wavelength stability. The average heights of the shape-engineered InAs/InAlGaAs QDs (SEQDs) and the conventionally-grown Stranski-Krastanov InAs QDs (CQD) were 10
±
0.5 and 2.5
±
0.5 nm, respectively. For the cavity length of 0.5 mm, the threshold current of the laser diodes (LDs) with the InAs/InAlGaAs SEQDs as an active layer (SEQD-LD) was decreased by 3.6 times smaller than that of the LDs with the InAs CQDs (CQD-LD). Also the slope efficiency for the SEQD-LD was increased to 0.15 from 0.087 W/A of the CQD-LD. While the lasing wavelength of the CQD-LD was red-shifted by 0.032 μm with increasing cavity length from 0.5 to 0.75 mm, the lasing emission of the SEQD-LD was red-shifted only by 0.012 μm with increasing cavity length from 0.5 to 1.5 mm. From these results, the gain of the QDLDs was enhanced by increasing the height of the QDs due to the enhancement in the confinement of the carrier wave-functions.</description><subject>Carrier confinement</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laser diode</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optics</subject><subject>Other semiconductors</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Quantum dot</subject><subject>Quantum dots</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Specific materials</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kcFqHDEMhk1poNukD9CbL21PM5HHk_GankpIm0Cgl_ZsNB7NrhevvbE9G_L2cdiQY04S4pME_8fYVwGtADFc7tqS57YD0C2IVgj4wFZirXTTKSk-shVAD80AGj6xzznvAEB0nVyxchO2GCztKRTuAi9b4husTZz5w4KhLHs-xcI9Zkp8fKqMTYTZhQ2PR0oeD3VUaJPQ85HKI1Hg5MmWFAPHMPFt9MQf8UjNvARbXAz5gp3N6DN9ea3n7P_vm3_Xt8393z9317_uGys1lIYIZjsqkgjTRP1IPWqN0zhgP6puvhJaS0l2JqUAaQISa9SdpKtxIC3Xa3nOfpzuHlJ8WCgXs3fZkvcYKC7ZaJCD7LToKvn9XVL2fQ9aiwqKE2hTzDnRbA7J7TE9GQHmxYTZmWrCvJgwIEw1UXe-vR7HbNHPqQbu8ttiJ5SQClTlfp44qpkcHSWTraMqZ3KpBmqm6N758gwlh6DA</recordid><startdate>20090529</startdate><enddate>20090529</enddate><creator>Jo, Byounggu</creator><creator>Yang, Youngsin</creator><creator>Kim, Jaesu</creator><creator>Ko, Myoungkuk</creator><creator>Lee, Kwang Jae</creator><creator>Lee, Cheul-Ro</creator><creator>Kim, Jin Soo</creator><creator>Choi, Byoung Seok</creator><creator>Oh, Dae Kon</creator><creator>Leem, Jae-Young</creator><creator>Kim, Jong Su</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20090529</creationdate><title>Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions</title><author>Jo, Byounggu ; Yang, Youngsin ; Kim, Jaesu ; Ko, Myoungkuk ; Lee, Kwang Jae ; Lee, Cheul-Ro ; Kim, Jin Soo ; Choi, Byoung Seok ; Oh, Dae Kon ; Leem, Jae-Young ; Kim, Jong Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-ee0fcb7e3a0dde4be4a99adb6a4b72f519933ecfe770aed0e18a923e5b6e93883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Carrier confinement</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laser diode</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optics</topic><topic>Other semiconductors</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Quantum dot</topic><topic>Quantum dots</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Byounggu</creatorcontrib><creatorcontrib>Yang, Youngsin</creatorcontrib><creatorcontrib>Kim, Jaesu</creatorcontrib><creatorcontrib>Ko, Myoungkuk</creatorcontrib><creatorcontrib>Lee, Kwang Jae</creatorcontrib><creatorcontrib>Lee, Cheul-Ro</creatorcontrib><creatorcontrib>Kim, Jin Soo</creatorcontrib><creatorcontrib>Choi, Byoung Seok</creatorcontrib><creatorcontrib>Oh, Dae Kon</creatorcontrib><creatorcontrib>Leem, Jae-Young</creatorcontrib><creatorcontrib>Kim, Jong Su</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Byounggu</au><au>Yang, Youngsin</au><au>Kim, Jaesu</au><au>Ko, Myoungkuk</au><au>Lee, Kwang Jae</au><au>Lee, Cheul-Ro</au><au>Kim, Jin Soo</au><au>Choi, Byoung Seok</au><au>Oh, Dae Kon</au><au>Leem, Jae-Young</au><au>Kim, Jong Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions</atitle><jtitle>Thin solid films</jtitle><date>2009-05-29</date><risdate>2009</risdate><volume>517</volume><issue>14</issue><spage>3983</spage><epage>3986</epage><pages>3983-3986</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>We report the influences of quantum dot (QD) shape on the lasing characteristics such as threshold current, slope efficiency, and wavelength stability. The average heights of the shape-engineered InAs/InAlGaAs QDs (SEQDs) and the conventionally-grown Stranski-Krastanov InAs QDs (CQD) were 10
±
0.5 and 2.5
±
0.5 nm, respectively. For the cavity length of 0.5 mm, the threshold current of the laser diodes (LDs) with the InAs/InAlGaAs SEQDs as an active layer (SEQD-LD) was decreased by 3.6 times smaller than that of the LDs with the InAs CQDs (CQD-LD). Also the slope efficiency for the SEQD-LD was increased to 0.15 from 0.087 W/A of the CQD-LD. While the lasing wavelength of the CQD-LD was red-shifted by 0.032 μm with increasing cavity length from 0.5 to 0.75 mm, the lasing emission of the SEQD-LD was red-shifted only by 0.012 μm with increasing cavity length from 0.5 to 1.5 mm. From these results, the gain of the QDLDs was enhanced by increasing the height of the QDs due to the enhancement in the confinement of the carrier wave-functions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2009.01.110</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2009-05, Vol.517 (14), p.3983-3986 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_903632912 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Carrier confinement Cross-disciplinary physics: materials science rheology Exact sciences and technology Fundamental areas of phenomenology (including applications) Laser diode Lasers Materials science Nanoscale materials and structures: fabrication and characterization Optics Other semiconductors Other topics in nanoscale materials and structures Physics Quantum dot Quantum dots Semiconductor lasers laser diodes Specific materials |
title | Enhancement in the gain of quantum dot laser by increasing overlap integral between electron and hole wave-functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20in%20the%20gain%20of%20quantum%20dot%20laser%20by%20increasing%20overlap%20integral%20between%20electron%20and%20hole%20wave-functions&rft.jtitle=Thin%20solid%20films&rft.au=Jo,%20Byounggu&rft.date=2009-05-29&rft.volume=517&rft.issue=14&rft.spage=3983&rft.epage=3986&rft.pages=3983-3986&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2009.01.110&rft_dat=%3Cproquest_cross%3E903632912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34440991&rft_id=info:pmid/&rft_els_id=S0040609009001928&rfr_iscdi=true |