An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media
In this study, a probabilistic collocation method (PCM) on sparse grids is used to solve stochastic equations describing flow and transport in three-dimensional, saturated, randomly heterogeneous porous media. The Karhunen–Loève decomposition is used to represent log hydraulic conductivity Y = ln K...
Gespeichert in:
Veröffentlicht in: | Advances in Water Resources, 32(5 SP ISS):712-722 32(5 SP ISS):712-722, 2009-05, Vol.32 (5), p.712-722 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 722 |
---|---|
container_issue | 5 |
container_start_page | 712 |
container_title | Advances in Water Resources, 32(5 SP ISS):712-722 |
container_volume | 32 |
creator | Lin, G. Tartakovsky, A.M. |
description | In this study, a probabilistic collocation method (PCM) on sparse grids is used to solve stochastic equations describing flow and transport in three-dimensional, saturated, randomly heterogeneous porous media. The Karhunen–Loève decomposition is used to represent log hydraulic conductivity
Y
=
ln
K
s
. The hydraulic head
h and average pore-velocity
v
are obtained by solving the continuity equation coupled with Darcy’s law with random hydraulic conductivity field. The concentration is computed by solving a stochastic advection–dispersion equation with stochastic average pore-velocity
v
computed from Darcy’s law. The PCM approach is an extension of the generalized polynomial chaos (gPC) that couples gPC with probabilistic collocation. By using sparse grid points in sample space rather than standard grids based on full tensor products, the PCM approach becomes much more efficient when applied to random processes with a large number of random dimensions. Monte Carlo (MC) simulations have also been conducted to verify accuracy of the PCM approach and to demonstrate that the PCM approach is computationally more efficient than MC simulations. The numerical examples demonstrate that the PCM approach on sparse grids can efficiently simulate solute transport in randomly heterogeneous porous media with large variances. |
doi_str_mv | 10.1016/j.advwatres.2008.09.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_903631857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170808001632</els_id><sourcerecordid>21117701</sourcerecordid><originalsourceid>FETCH-LOGICAL-a512t-c5970e5a3bcf6b0d8bd0b0d7a6ff4a38603a6a40745d8be77c2e7987aaaef0413</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEEkvhN9QcgAsJ4ziJk-Oq4kuqxAF6tmad8carxF5sb6v-G34qDlv1SE8zkp_58DtvUVxyqDjw7tOhwvH2DlOgWNUAfQVDBSCeFRvey7oculY-LzYgYCi5hP5l8SrGA2SwkfWm-LN1jIyx2pJLH9lk91Ppw0iBHYPf4c7ONiarmfbz7DUm6x1bKE1-ZDmLRwyR2D7YMTLjA0tTICpHu5CLGcWZmdnfMXQji34-JWIpoItHHxKzjuV89Mt8zyZKFPyeHPlTZPl5DQuNFl8XLwzOkd48xIvi5svnX1ffyusfX79fba9LbHmdSt0OEqhFsdOm28HY70bIQWJnTIOi70Bghw3Ips1vJKWuSQ69REQy0HBxUbw99_X5vypqm0hP2jtHOqmhE22_Mh_OTNbm94liUouNmuYZ_-2tBhCd4H0rM_n-v6RomrZpangSrDnnUsI6W55BHXyMgYw6BrtguFcc1GoEdVCPRlCrERQMKhshV757GIFR42yy6NrGx_Kad0ML0GXu8swZ9ArzTaO6-Vnn0bl50_di3WF7Jigf4tZSWHUip_OdwirT6O2T2_wFGU3bLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21117701</pqid></control><display><type>article</type><title>An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media</title><source>Elsevier ScienceDirect Journals</source><creator>Lin, G. ; Tartakovsky, A.M.</creator><creatorcontrib>Lin, G. ; Tartakovsky, A.M. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>In this study, a probabilistic collocation method (PCM) on sparse grids is used to solve stochastic equations describing flow and transport in three-dimensional, saturated, randomly heterogeneous porous media. The Karhunen–Loève decomposition is used to represent log hydraulic conductivity
Y
=
ln
K
s
. The hydraulic head
h and average pore-velocity
v
are obtained by solving the continuity equation coupled with Darcy’s law with random hydraulic conductivity field. The concentration is computed by solving a stochastic advection–dispersion equation with stochastic average pore-velocity
v
computed from Darcy’s law. The PCM approach is an extension of the generalized polynomial chaos (gPC) that couples gPC with probabilistic collocation. By using sparse grid points in sample space rather than standard grids based on full tensor products, the PCM approach becomes much more efficient when applied to random processes with a large number of random dimensions. Monte Carlo (MC) simulations have also been conducted to verify accuracy of the PCM approach and to demonstrate that the PCM approach is computationally more efficient than MC simulations. The numerical examples demonstrate that the PCM approach on sparse grids can efficiently simulate solute transport in randomly heterogeneous porous media with large variances.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2008.09.003</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>CONTINUITY EQUATIONS ; Earth sciences ; Earth, ocean, space ; ENVIRONMENTAL SCIENCES ; ENVIRONMENTAL TRANSPORT ; Exact sciences and technology ; FLUID FLOW ; groundwater flow ; Heterogeneous porous media ; HYDRAULIC CONDUCTIVITY ; Hydrogeology ; hydrologic models ; Hydrology. Hydrogeology ; mathematical models ; MATHEMATICS AND COMPUTING ; POROUS MATERIALS ; porous media ; Probabilistic collocation ; probabilistic collocation method ; probabilistic models ; simulation models ; Solute transport ; SOLUTES ; Stochastic method ; THREE-DIMENSIONAL CALCULATIONS</subject><ispartof>Advances in Water Resources, 32(5 SP ISS):712-722, 2009-05, Vol.32 (5), p.712-722</ispartof><rights>2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a512t-c5970e5a3bcf6b0d8bd0b0d7a6ff4a38603a6a40745d8be77c2e7987aaaef0413</citedby><cites>FETCH-LOGICAL-a512t-c5970e5a3bcf6b0d8bd0b0d7a6ff4a38603a6a40745d8be77c2e7987aaaef0413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0309170808001632$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21695006$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/963581$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, G.</creatorcontrib><creatorcontrib>Tartakovsky, A.M.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media</title><title>Advances in Water Resources, 32(5 SP ISS):712-722</title><description>In this study, a probabilistic collocation method (PCM) on sparse grids is used to solve stochastic equations describing flow and transport in three-dimensional, saturated, randomly heterogeneous porous media. The Karhunen–Loève decomposition is used to represent log hydraulic conductivity
Y
=
ln
K
s
. The hydraulic head
h and average pore-velocity
v
are obtained by solving the continuity equation coupled with Darcy’s law with random hydraulic conductivity field. The concentration is computed by solving a stochastic advection–dispersion equation with stochastic average pore-velocity
v
computed from Darcy’s law. The PCM approach is an extension of the generalized polynomial chaos (gPC) that couples gPC with probabilistic collocation. By using sparse grid points in sample space rather than standard grids based on full tensor products, the PCM approach becomes much more efficient when applied to random processes with a large number of random dimensions. Monte Carlo (MC) simulations have also been conducted to verify accuracy of the PCM approach and to demonstrate that the PCM approach is computationally more efficient than MC simulations. The numerical examples demonstrate that the PCM approach on sparse grids can efficiently simulate solute transport in randomly heterogeneous porous media with large variances.</description><subject>CONTINUITY EQUATIONS</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>ENVIRONMENTAL TRANSPORT</subject><subject>Exact sciences and technology</subject><subject>FLUID FLOW</subject><subject>groundwater flow</subject><subject>Heterogeneous porous media</subject><subject>HYDRAULIC CONDUCTIVITY</subject><subject>Hydrogeology</subject><subject>hydrologic models</subject><subject>Hydrology. Hydrogeology</subject><subject>mathematical models</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>POROUS MATERIALS</subject><subject>porous media</subject><subject>Probabilistic collocation</subject><subject>probabilistic collocation method</subject><subject>probabilistic models</subject><subject>simulation models</subject><subject>Solute transport</subject><subject>SOLUTES</subject><subject>Stochastic method</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEEkvhN9QcgAsJ4ziJk-Oq4kuqxAF6tmad8carxF5sb6v-G34qDlv1SE8zkp_58DtvUVxyqDjw7tOhwvH2DlOgWNUAfQVDBSCeFRvey7oculY-LzYgYCi5hP5l8SrGA2SwkfWm-LN1jIyx2pJLH9lk91Ppw0iBHYPf4c7ONiarmfbz7DUm6x1bKE1-ZDmLRwyR2D7YMTLjA0tTICpHu5CLGcWZmdnfMXQji34-JWIpoItHHxKzjuV89Mt8zyZKFPyeHPlTZPl5DQuNFl8XLwzOkd48xIvi5svnX1ffyusfX79fba9LbHmdSt0OEqhFsdOm28HY70bIQWJnTIOi70Bghw3Ips1vJKWuSQ69REQy0HBxUbw99_X5vypqm0hP2jtHOqmhE22_Mh_OTNbm94liUouNmuYZ_-2tBhCd4H0rM_n-v6RomrZpangSrDnnUsI6W55BHXyMgYw6BrtguFcc1GoEdVCPRlCrERQMKhshV757GIFR42yy6NrGx_Kad0ML0GXu8swZ9ArzTaO6-Vnn0bl50_di3WF7Jigf4tZSWHUip_OdwirT6O2T2_wFGU3bLA</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Lin, G.</creator><creator>Tartakovsky, A.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>L.G</scope><scope>P64</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>20090501</creationdate><title>An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media</title><author>Lin, G. ; Tartakovsky, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a512t-c5970e5a3bcf6b0d8bd0b0d7a6ff4a38603a6a40745d8be77c2e7987aaaef0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>CONTINUITY EQUATIONS</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>ENVIRONMENTAL TRANSPORT</topic><topic>Exact sciences and technology</topic><topic>FLUID FLOW</topic><topic>groundwater flow</topic><topic>Heterogeneous porous media</topic><topic>HYDRAULIC CONDUCTIVITY</topic><topic>Hydrogeology</topic><topic>hydrologic models</topic><topic>Hydrology. Hydrogeology</topic><topic>mathematical models</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>POROUS MATERIALS</topic><topic>porous media</topic><topic>Probabilistic collocation</topic><topic>probabilistic collocation method</topic><topic>probabilistic models</topic><topic>simulation models</topic><topic>Solute transport</topic><topic>SOLUTES</topic><topic>Stochastic method</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, G.</creatorcontrib><creatorcontrib>Tartakovsky, A.M.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Advances in Water Resources, 32(5 SP ISS):712-722</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, G.</au><au>Tartakovsky, A.M.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media</atitle><jtitle>Advances in Water Resources, 32(5 SP ISS):712-722</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>32</volume><issue>5</issue><spage>712</spage><epage>722</epage><pages>712-722</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>In this study, a probabilistic collocation method (PCM) on sparse grids is used to solve stochastic equations describing flow and transport in three-dimensional, saturated, randomly heterogeneous porous media. The Karhunen–Loève decomposition is used to represent log hydraulic conductivity
Y
=
ln
K
s
. The hydraulic head
h and average pore-velocity
v
are obtained by solving the continuity equation coupled with Darcy’s law with random hydraulic conductivity field. The concentration is computed by solving a stochastic advection–dispersion equation with stochastic average pore-velocity
v
computed from Darcy’s law. The PCM approach is an extension of the generalized polynomial chaos (gPC) that couples gPC with probabilistic collocation. By using sparse grid points in sample space rather than standard grids based on full tensor products, the PCM approach becomes much more efficient when applied to random processes with a large number of random dimensions. Monte Carlo (MC) simulations have also been conducted to verify accuracy of the PCM approach and to demonstrate that the PCM approach is computationally more efficient than MC simulations. The numerical examples demonstrate that the PCM approach on sparse grids can efficiently simulate solute transport in randomly heterogeneous porous media with large variances.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2008.09.003</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-1708 |
ispartof | Advances in Water Resources, 32(5 SP ISS):712-722, 2009-05, Vol.32 (5), p.712-722 |
issn | 0309-1708 1872-9657 |
language | eng |
recordid | cdi_proquest_miscellaneous_903631857 |
source | Elsevier ScienceDirect Journals |
subjects | CONTINUITY EQUATIONS Earth sciences Earth, ocean, space ENVIRONMENTAL SCIENCES ENVIRONMENTAL TRANSPORT Exact sciences and technology FLUID FLOW groundwater flow Heterogeneous porous media HYDRAULIC CONDUCTIVITY Hydrogeology hydrologic models Hydrology. Hydrogeology mathematical models MATHEMATICS AND COMPUTING POROUS MATERIALS porous media Probabilistic collocation probabilistic collocation method probabilistic models simulation models Solute transport SOLUTES Stochastic method THREE-DIMENSIONAL CALCULATIONS |
title | An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient,%20high-order%20probabilistic%20collocation%20method%20on%20sparse%20grids%20for%20three-dimensional%20flow%20and%20solute%20transport%20in%20randomly%20heterogeneous%20porous%20media&rft.jtitle=Advances%20in%20Water%20Resources,%2032(5%20SP%20ISS):712-722&rft.au=Lin,%20G.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2009-05-01&rft.volume=32&rft.issue=5&rft.spage=712&rft.epage=722&rft.pages=712-722&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/j.advwatres.2008.09.003&rft_dat=%3Cproquest_osti_%3E21117701%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21117701&rft_id=info:pmid/&rft_els_id=S0309170808001632&rfr_iscdi=true |