Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation

In this paper, a large-signal modeling technique has been developed for a three-phase, three-level Vienna rectifier operating in continuous conduction mode. The considered circuit is a fifth-order system with time-varying variables on the ac side. This model is first established in the direct abc re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2008-03, Vol.55 (3), p.1213-1224
Hauptverfasser: Youssef, N.B.H., Al-Haddad, K., Kanaan, H.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1224
container_issue 3
container_start_page 1213
container_title IEEE transactions on industrial electronics (1982)
container_volume 55
creator Youssef, N.B.H.
Al-Haddad, K.
Kanaan, H.Y.
description In this paper, a large-signal modeling technique has been developed for a three-phase, three-level Vienna rectifier operating in continuous conduction mode. The considered circuit is a fifth-order system with time-varying variables on the ac side. This model is first established in the direct abc reference frame using the state space averaging technique, then modified through an abc/dqo transform and adequate duty cycle alteration to avoid time-dependency. The system stability in a closed loop, using a multiloop PI-based control scheme, is proved by the convergence of the phase plane trajectories to the nominal point for any initial condition. These curves are drawn as ac line peak currents as a function of total output dc voltage. The different relationships governing the system inputs/outputs are verified not only for the nominal operating point, but also for a wide operation range. The accuracy of the proposed model is verified on a 1.5-kW experimental prototype controlled by the DS-1104 board of dSPACE. The converter large signal behavior is experimentally analyzed using output time domain responses toward different input variations. Significantly high accordance between the experimental results and the theoretical model, implemented with SIMULINK/Matlab, is verified.
doi_str_mv 10.1109/TIE.2007.910626
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903631396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4401207</ieee_id><sourcerecordid>903631396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-cee0b6ed0c51c6261eeb7a42e85fee2e4912d167a894edd50e93bb9aea10a1953</originalsourceid><addsrcrecordid>eNp9kb1vE0EQxVcIJEygpqBZUUAozp7Zj7vbMooMRDICYZOUq_XdnL3hcufsrgH3_OGsZURBkWqK-b35eI-xlwhTRDCz1dV8KgCqqUEoRfmITVDrqjBG1Y_ZBERVFwCqfMqexXgLgEqjnrDfCxc2VCz9ZnA9_zS21Pthw93Q8mUi1x6KZXKJ-EVuH6KPfOy44zjVxfcbvtoGouLL1kWaLX_61GxnC_pBPT-_9jQM7h3_Sk3ynafAb3za8vmvHQV_R0PKy65d71uX_Dg8Z08610d68beesW_v56vLj8Xi84ery4tF0chapaIhgnVJLTQam_wiEq0rpwTVuiMSpAyKFsvK1UZR22ogI9dr48ghODRanrG3p7m7MN7vKSZ752NDfe8GGvfRGpClRGnKTL55kJRKSVNLyOD5g2A-B0VlUNUZff0fejvuQ_Y12roUNRitjyfOTlATxhgDdXaXDXPhYBHsMWebc7bHnO0p56x4dVJ4IvpHKwUooJJ_AAw4oto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862809555</pqid></control><display><type>article</type><title>Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation</title><source>IEEE Electronic Library (IEL)</source><creator>Youssef, N.B.H. ; Al-Haddad, K. ; Kanaan, H.Y.</creator><creatorcontrib>Youssef, N.B.H. ; Al-Haddad, K. ; Kanaan, H.Y.</creatorcontrib><description>In this paper, a large-signal modeling technique has been developed for a three-phase, three-level Vienna rectifier operating in continuous conduction mode. The considered circuit is a fifth-order system with time-varying variables on the ac side. This model is first established in the direct abc reference frame using the state space averaging technique, then modified through an abc/dqo transform and adequate duty cycle alteration to avoid time-dependency. The system stability in a closed loop, using a multiloop PI-based control scheme, is proved by the convergence of the phase plane trajectories to the nominal point for any initial condition. These curves are drawn as ac line peak currents as a function of total output dc voltage. The different relationships governing the system inputs/outputs are verified not only for the nominal operating point, but also for a wide operation range. The accuracy of the proposed model is verified on a 1.5-kW experimental prototype controlled by the DS-1104 board of dSPACE. The converter large signal behavior is experimentally analyzed using output time domain responses toward different input variations. Significantly high accordance between the experimental results and the theoretical model, implemented with SIMULINK/Matlab, is verified.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2007.910626</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit stability ; Control systems ; Convergence ; Direct current ; Electric potential ; High power factor ; Initial conditions ; large-signal modeling ; low ac current total harmonic distortion (THD) ; Mathematical model ; Mathematical models ; Matlab ; Motors ; phase plane curves ; Rectifiers ; State-space methods ; Steady-state ; Studies ; Switches ; Systems stability ; three-phase/switch/level rectifier ; time response analysis ; Time varying systems ; Trajectories ; Voltage</subject><ispartof>IEEE transactions on industrial electronics (1982), 2008-03, Vol.55 (3), p.1213-1224</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-cee0b6ed0c51c6261eeb7a42e85fee2e4912d167a894edd50e93bb9aea10a1953</citedby><cites>FETCH-LOGICAL-c384t-cee0b6ed0c51c6261eeb7a42e85fee2e4912d167a894edd50e93bb9aea10a1953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4401207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4401207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Youssef, N.B.H.</creatorcontrib><creatorcontrib>Al-Haddad, K.</creatorcontrib><creatorcontrib>Kanaan, H.Y.</creatorcontrib><title>Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this paper, a large-signal modeling technique has been developed for a three-phase, three-level Vienna rectifier operating in continuous conduction mode. The considered circuit is a fifth-order system with time-varying variables on the ac side. This model is first established in the direct abc reference frame using the state space averaging technique, then modified through an abc/dqo transform and adequate duty cycle alteration to avoid time-dependency. The system stability in a closed loop, using a multiloop PI-based control scheme, is proved by the convergence of the phase plane trajectories to the nominal point for any initial condition. These curves are drawn as ac line peak currents as a function of total output dc voltage. The different relationships governing the system inputs/outputs are verified not only for the nominal operating point, but also for a wide operation range. The accuracy of the proposed model is verified on a 1.5-kW experimental prototype controlled by the DS-1104 board of dSPACE. The converter large signal behavior is experimentally analyzed using output time domain responses toward different input variations. Significantly high accordance between the experimental results and the theoretical model, implemented with SIMULINK/Matlab, is verified.</description><subject>Circuit stability</subject><subject>Control systems</subject><subject>Convergence</subject><subject>Direct current</subject><subject>Electric potential</subject><subject>High power factor</subject><subject>Initial conditions</subject><subject>large-signal modeling</subject><subject>low ac current total harmonic distortion (THD)</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>Motors</subject><subject>phase plane curves</subject><subject>Rectifiers</subject><subject>State-space methods</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Switches</subject><subject>Systems stability</subject><subject>three-phase/switch/level rectifier</subject><subject>time response analysis</subject><subject>Time varying systems</subject><subject>Trajectories</subject><subject>Voltage</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb1vE0EQxVcIJEygpqBZUUAozp7Zj7vbMooMRDICYZOUq_XdnL3hcufsrgH3_OGsZURBkWqK-b35eI-xlwhTRDCz1dV8KgCqqUEoRfmITVDrqjBG1Y_ZBERVFwCqfMqexXgLgEqjnrDfCxc2VCz9ZnA9_zS21Pthw93Q8mUi1x6KZXKJ-EVuH6KPfOy44zjVxfcbvtoGouLL1kWaLX_61GxnC_pBPT-_9jQM7h3_Sk3ynafAb3za8vmvHQV_R0PKy65d71uX_Dg8Z08610d68beesW_v56vLj8Xi84ery4tF0chapaIhgnVJLTQam_wiEq0rpwTVuiMSpAyKFsvK1UZR22ogI9dr48ghODRanrG3p7m7MN7vKSZ752NDfe8GGvfRGpClRGnKTL55kJRKSVNLyOD5g2A-B0VlUNUZff0fejvuQ_Y12roUNRitjyfOTlATxhgDdXaXDXPhYBHsMWebc7bHnO0p56x4dVJ4IvpHKwUooJJ_AAw4oto</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Youssef, N.B.H.</creator><creator>Al-Haddad, K.</creator><creator>Kanaan, H.Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080301</creationdate><title>Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation</title><author>Youssef, N.B.H. ; Al-Haddad, K. ; Kanaan, H.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-cee0b6ed0c51c6261eeb7a42e85fee2e4912d167a894edd50e93bb9aea10a1953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Circuit stability</topic><topic>Control systems</topic><topic>Convergence</topic><topic>Direct current</topic><topic>Electric potential</topic><topic>High power factor</topic><topic>Initial conditions</topic><topic>large-signal modeling</topic><topic>low ac current total harmonic distortion (THD)</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>Motors</topic><topic>phase plane curves</topic><topic>Rectifiers</topic><topic>State-space methods</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Switches</topic><topic>Systems stability</topic><topic>three-phase/switch/level rectifier</topic><topic>time response analysis</topic><topic>Time varying systems</topic><topic>Trajectories</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youssef, N.B.H.</creatorcontrib><creatorcontrib>Al-Haddad, K.</creatorcontrib><creatorcontrib>Kanaan, H.Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youssef, N.B.H.</au><au>Al-Haddad, K.</au><au>Kanaan, H.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>55</volume><issue>3</issue><spage>1213</spage><epage>1224</epage><pages>1213-1224</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this paper, a large-signal modeling technique has been developed for a three-phase, three-level Vienna rectifier operating in continuous conduction mode. The considered circuit is a fifth-order system with time-varying variables on the ac side. This model is first established in the direct abc reference frame using the state space averaging technique, then modified through an abc/dqo transform and adequate duty cycle alteration to avoid time-dependency. The system stability in a closed loop, using a multiloop PI-based control scheme, is proved by the convergence of the phase plane trajectories to the nominal point for any initial condition. These curves are drawn as ac line peak currents as a function of total output dc voltage. The different relationships governing the system inputs/outputs are verified not only for the nominal operating point, but also for a wide operation range. The accuracy of the proposed model is verified on a 1.5-kW experimental prototype controlled by the DS-1104 board of dSPACE. The converter large signal behavior is experimentally analyzed using output time domain responses toward different input variations. Significantly high accordance between the experimental results and the theoretical model, implemented with SIMULINK/Matlab, is verified.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2007.910626</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2008-03, Vol.55 (3), p.1213-1224
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_miscellaneous_903631396
source IEEE Electronic Library (IEL)
subjects Circuit stability
Control systems
Convergence
Direct current
Electric potential
High power factor
Initial conditions
large-signal modeling
low ac current total harmonic distortion (THD)
Mathematical model
Mathematical models
Matlab
Motors
phase plane curves
Rectifiers
State-space methods
Steady-state
Studies
Switches
Systems stability
three-phase/switch/level rectifier
time response analysis
Time varying systems
Trajectories
Voltage
title Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Signal%20Modeling%20and%20Steady-State%20Analysis%20of%20a%201.5-kW%20Three-Phase/Switch/Level%20(Vienna)%20Rectifier%20With%20Experimental%20Validation&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Youssef,%20N.B.H.&rft.date=2008-03-01&rft.volume=55&rft.issue=3&rft.spage=1213&rft.epage=1224&rft.pages=1213-1224&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2007.910626&rft_dat=%3Cproquest_RIE%3E903631396%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862809555&rft_id=info:pmid/&rft_ieee_id=4401207&rfr_iscdi=true