Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation
In this paper, a large-signal modeling technique has been developed for a three-phase, three-level Vienna rectifier operating in continuous conduction mode. The considered circuit is a fifth-order system with time-varying variables on the ac side. This model is first established in the direct abc re...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2008-03, Vol.55 (3), p.1213-1224 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1224 |
---|---|
container_issue | 3 |
container_start_page | 1213 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 55 |
creator | Youssef, N.B.H. Al-Haddad, K. Kanaan, H.Y. |
description | In this paper, a large-signal modeling technique has been developed for a three-phase, three-level Vienna rectifier operating in continuous conduction mode. The considered circuit is a fifth-order system with time-varying variables on the ac side. This model is first established in the direct abc reference frame using the state space averaging technique, then modified through an abc/dqo transform and adequate duty cycle alteration to avoid time-dependency. The system stability in a closed loop, using a multiloop PI-based control scheme, is proved by the convergence of the phase plane trajectories to the nominal point for any initial condition. These curves are drawn as ac line peak currents as a function of total output dc voltage. The different relationships governing the system inputs/outputs are verified not only for the nominal operating point, but also for a wide operation range. The accuracy of the proposed model is verified on a 1.5-kW experimental prototype controlled by the DS-1104 board of dSPACE. The converter large signal behavior is experimentally analyzed using output time domain responses toward different input variations. Significantly high accordance between the experimental results and the theoretical model, implemented with SIMULINK/Matlab, is verified. |
doi_str_mv | 10.1109/TIE.2007.910626 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903631396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4401207</ieee_id><sourcerecordid>903631396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-cee0b6ed0c51c6261eeb7a42e85fee2e4912d167a894edd50e93bb9aea10a1953</originalsourceid><addsrcrecordid>eNp9kb1vE0EQxVcIJEygpqBZUUAozp7Zj7vbMooMRDICYZOUq_XdnL3hcufsrgH3_OGsZURBkWqK-b35eI-xlwhTRDCz1dV8KgCqqUEoRfmITVDrqjBG1Y_ZBERVFwCqfMqexXgLgEqjnrDfCxc2VCz9ZnA9_zS21Pthw93Q8mUi1x6KZXKJ-EVuH6KPfOy44zjVxfcbvtoGouLL1kWaLX_61GxnC_pBPT-_9jQM7h3_Sk3ynafAb3za8vmvHQV_R0PKy65d71uX_Dg8Z08610d68beesW_v56vLj8Xi84ery4tF0chapaIhgnVJLTQam_wiEq0rpwTVuiMSpAyKFsvK1UZR22ogI9dr48ghODRanrG3p7m7MN7vKSZ752NDfe8GGvfRGpClRGnKTL55kJRKSVNLyOD5g2A-B0VlUNUZff0fejvuQ_Y12roUNRitjyfOTlATxhgDdXaXDXPhYBHsMWebc7bHnO0p56x4dVJ4IvpHKwUooJJ_AAw4oto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862809555</pqid></control><display><type>article</type><title>Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation</title><source>IEEE Electronic Library (IEL)</source><creator>Youssef, N.B.H. ; Al-Haddad, K. ; Kanaan, H.Y.</creator><creatorcontrib>Youssef, N.B.H. ; Al-Haddad, K. ; Kanaan, H.Y.</creatorcontrib><description>In this paper, a large-signal modeling technique has been developed for a three-phase, three-level Vienna rectifier operating in continuous conduction mode. The considered circuit is a fifth-order system with time-varying variables on the ac side. This model is first established in the direct abc reference frame using the state space averaging technique, then modified through an abc/dqo transform and adequate duty cycle alteration to avoid time-dependency. The system stability in a closed loop, using a multiloop PI-based control scheme, is proved by the convergence of the phase plane trajectories to the nominal point for any initial condition. These curves are drawn as ac line peak currents as a function of total output dc voltage. The different relationships governing the system inputs/outputs are verified not only for the nominal operating point, but also for a wide operation range. The accuracy of the proposed model is verified on a 1.5-kW experimental prototype controlled by the DS-1104 board of dSPACE. The converter large signal behavior is experimentally analyzed using output time domain responses toward different input variations. Significantly high accordance between the experimental results and the theoretical model, implemented with SIMULINK/Matlab, is verified.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2007.910626</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit stability ; Control systems ; Convergence ; Direct current ; Electric potential ; High power factor ; Initial conditions ; large-signal modeling ; low ac current total harmonic distortion (THD) ; Mathematical model ; Mathematical models ; Matlab ; Motors ; phase plane curves ; Rectifiers ; State-space methods ; Steady-state ; Studies ; Switches ; Systems stability ; three-phase/switch/level rectifier ; time response analysis ; Time varying systems ; Trajectories ; Voltage</subject><ispartof>IEEE transactions on industrial electronics (1982), 2008-03, Vol.55 (3), p.1213-1224</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-cee0b6ed0c51c6261eeb7a42e85fee2e4912d167a894edd50e93bb9aea10a1953</citedby><cites>FETCH-LOGICAL-c384t-cee0b6ed0c51c6261eeb7a42e85fee2e4912d167a894edd50e93bb9aea10a1953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4401207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4401207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Youssef, N.B.H.</creatorcontrib><creatorcontrib>Al-Haddad, K.</creatorcontrib><creatorcontrib>Kanaan, H.Y.</creatorcontrib><title>Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this paper, a large-signal modeling technique has been developed for a three-phase, three-level Vienna rectifier operating in continuous conduction mode. The considered circuit is a fifth-order system with time-varying variables on the ac side. This model is first established in the direct abc reference frame using the state space averaging technique, then modified through an abc/dqo transform and adequate duty cycle alteration to avoid time-dependency. The system stability in a closed loop, using a multiloop PI-based control scheme, is proved by the convergence of the phase plane trajectories to the nominal point for any initial condition. These curves are drawn as ac line peak currents as a function of total output dc voltage. The different relationships governing the system inputs/outputs are verified not only for the nominal operating point, but also for a wide operation range. The accuracy of the proposed model is verified on a 1.5-kW experimental prototype controlled by the DS-1104 board of dSPACE. The converter large signal behavior is experimentally analyzed using output time domain responses toward different input variations. Significantly high accordance between the experimental results and the theoretical model, implemented with SIMULINK/Matlab, is verified.</description><subject>Circuit stability</subject><subject>Control systems</subject><subject>Convergence</subject><subject>Direct current</subject><subject>Electric potential</subject><subject>High power factor</subject><subject>Initial conditions</subject><subject>large-signal modeling</subject><subject>low ac current total harmonic distortion (THD)</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>Motors</subject><subject>phase plane curves</subject><subject>Rectifiers</subject><subject>State-space methods</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Switches</subject><subject>Systems stability</subject><subject>three-phase/switch/level rectifier</subject><subject>time response analysis</subject><subject>Time varying systems</subject><subject>Trajectories</subject><subject>Voltage</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb1vE0EQxVcIJEygpqBZUUAozp7Zj7vbMooMRDICYZOUq_XdnL3hcufsrgH3_OGsZURBkWqK-b35eI-xlwhTRDCz1dV8KgCqqUEoRfmITVDrqjBG1Y_ZBERVFwCqfMqexXgLgEqjnrDfCxc2VCz9ZnA9_zS21Pthw93Q8mUi1x6KZXKJ-EVuH6KPfOy44zjVxfcbvtoGouLL1kWaLX_61GxnC_pBPT-_9jQM7h3_Sk3ynafAb3za8vmvHQV_R0PKy65d71uX_Dg8Z08610d68beesW_v56vLj8Xi84ery4tF0chapaIhgnVJLTQam_wiEq0rpwTVuiMSpAyKFsvK1UZR22ogI9dr48ghODRanrG3p7m7MN7vKSZ752NDfe8GGvfRGpClRGnKTL55kJRKSVNLyOD5g2A-B0VlUNUZff0fejvuQ_Y12roUNRitjyfOTlATxhgDdXaXDXPhYBHsMWebc7bHnO0p56x4dVJ4IvpHKwUooJJ_AAw4oto</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Youssef, N.B.H.</creator><creator>Al-Haddad, K.</creator><creator>Kanaan, H.Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080301</creationdate><title>Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation</title><author>Youssef, N.B.H. ; Al-Haddad, K. ; Kanaan, H.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-cee0b6ed0c51c6261eeb7a42e85fee2e4912d167a894edd50e93bb9aea10a1953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Circuit stability</topic><topic>Control systems</topic><topic>Convergence</topic><topic>Direct current</topic><topic>Electric potential</topic><topic>High power factor</topic><topic>Initial conditions</topic><topic>large-signal modeling</topic><topic>low ac current total harmonic distortion (THD)</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>Motors</topic><topic>phase plane curves</topic><topic>Rectifiers</topic><topic>State-space methods</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Switches</topic><topic>Systems stability</topic><topic>three-phase/switch/level rectifier</topic><topic>time response analysis</topic><topic>Time varying systems</topic><topic>Trajectories</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youssef, N.B.H.</creatorcontrib><creatorcontrib>Al-Haddad, K.</creatorcontrib><creatorcontrib>Kanaan, H.Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youssef, N.B.H.</au><au>Al-Haddad, K.</au><au>Kanaan, H.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>55</volume><issue>3</issue><spage>1213</spage><epage>1224</epage><pages>1213-1224</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this paper, a large-signal modeling technique has been developed for a three-phase, three-level Vienna rectifier operating in continuous conduction mode. The considered circuit is a fifth-order system with time-varying variables on the ac side. This model is first established in the direct abc reference frame using the state space averaging technique, then modified through an abc/dqo transform and adequate duty cycle alteration to avoid time-dependency. The system stability in a closed loop, using a multiloop PI-based control scheme, is proved by the convergence of the phase plane trajectories to the nominal point for any initial condition. These curves are drawn as ac line peak currents as a function of total output dc voltage. The different relationships governing the system inputs/outputs are verified not only for the nominal operating point, but also for a wide operation range. The accuracy of the proposed model is verified on a 1.5-kW experimental prototype controlled by the DS-1104 board of dSPACE. The converter large signal behavior is experimentally analyzed using output time domain responses toward different input variations. Significantly high accordance between the experimental results and the theoretical model, implemented with SIMULINK/Matlab, is verified.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2007.910626</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2008-03, Vol.55 (3), p.1213-1224 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_miscellaneous_903631396 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit stability Control systems Convergence Direct current Electric potential High power factor Initial conditions large-signal modeling low ac current total harmonic distortion (THD) Mathematical model Mathematical models Matlab Motors phase plane curves Rectifiers State-space methods Steady-state Studies Switches Systems stability three-phase/switch/level rectifier time response analysis Time varying systems Trajectories Voltage |
title | Large-Signal Modeling and Steady-State Analysis of a 1.5-kW Three-Phase/Switch/Level (Vienna) Rectifier With Experimental Validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Signal%20Modeling%20and%20Steady-State%20Analysis%20of%20a%201.5-kW%20Three-Phase/Switch/Level%20(Vienna)%20Rectifier%20With%20Experimental%20Validation&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Youssef,%20N.B.H.&rft.date=2008-03-01&rft.volume=55&rft.issue=3&rft.spage=1213&rft.epage=1224&rft.pages=1213-1224&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2007.910626&rft_dat=%3Cproquest_RIE%3E903631396%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862809555&rft_id=info:pmid/&rft_ieee_id=4401207&rfr_iscdi=true |