Monitoring process mean and variability with generally weighted moving average control charts
This study investigates control charts for simultaneous monitoring of process mean and process variability when an individual observation is taken at each sampling point. A combined scheme consisting of a two-side generally weighted moving average (GWMA) mean chart and a two-side GWMA variance chart...
Gespeichert in:
Veröffentlicht in: | Computers & industrial engineering 2009-08, Vol.57 (1), p.401-407 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 1 |
container_start_page | 401 |
container_title | Computers & industrial engineering |
container_volume | 57 |
creator | Sheu, Shey-Huei Tai, Shih-Hung Hsieh, Yu-Tai Lin, Tse-Chieh |
description | This study investigates control charts for simultaneous monitoring of process mean and process variability when an individual observation is taken at each sampling point. A combined scheme consisting of a two-side generally weighted moving average (GWMA) mean chart and a two-side GWMA variance chart is developed. This new combined scheme will compare with the exponentially weighted moving average (EWMA) single charts and a combined EWMA chart. It is shown that the combination of the GWMA charts is more sensitive than the combination of the EWMA charts for detecting small shifts in the process mean and variance. An example and a simple procedure for the design of a combined GWMA chart are also given to illustrate this study. |
doi_str_mv | 10.1016/j.cie.2008.12.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903631373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835209000035</els_id><sourcerecordid>1746794061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6821a0f58d21f4f4369b2215551ea62b4f6f2b4a98bb552b664b4fcb898672a83</originalsourceid><addsrcrecordid>eNp9kc1qGzEUhUVoIG7SB8hOZNGuZqp_a-iqmKQJuGSTLIvQaO7YMmPJlWQHv31k3FUX2egi3e8cODoI3VLSUkLV903rPLSMEN1S1hJKLtCM6nnXECnJJzQjXJFGc8mu0OecN4QQITs6Q39-x-BLTD6s8C5FBznjLdiAbRjwwSZvez_5csRvvqzxCgIkO031Cn61LjDgbTyctPZQFyvALoaS4oTd2qaSb9DlaKcMX_7Na_T6cP-yeGyWz7-eFj-XjeN6XhqlGbVklHpgdBSj4KrrGaNSSgpWsV6Maqyn7XTfS8l6pUR9c73utJozq_k1-nb2rRH-7iEXs_XZwTTZAHGfTVfjc8rnvJJfPyS5ELxTXFbw7j9wE_cp1BSGVSfRCXlyo2fIpZhzgtHskt_adDSUmFMvZmNqL-bUi6HM1F6q5sdZA_VDDh6SyRUJDgafwBUzRP-B-h0m3pWN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213749453</pqid></control><display><type>article</type><title>Monitoring process mean and variability with generally weighted moving average control charts</title><source>Elsevier ScienceDirect Journals</source><creator>Sheu, Shey-Huei ; Tai, Shih-Hung ; Hsieh, Yu-Tai ; Lin, Tse-Chieh</creator><creatorcontrib>Sheu, Shey-Huei ; Tai, Shih-Hung ; Hsieh, Yu-Tai ; Lin, Tse-Chieh</creatorcontrib><description>This study investigates control charts for simultaneous monitoring of process mean and process variability when an individual observation is taken at each sampling point. A combined scheme consisting of a two-side generally weighted moving average (GWMA) mean chart and a two-side GWMA variance chart is developed. This new combined scheme will compare with the exponentially weighted moving average (EWMA) single charts and a combined EWMA chart. It is shown that the combination of the GWMA charts is more sensitive than the combination of the EWMA charts for detecting small shifts in the process mean and variance. An example and a simple procedure for the design of a combined GWMA chart are also given to illustrate this study.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2008.12.010</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Average run length ; Control chart ; Control charts ; Exponentially weighted moving average ; Generally weighted moving average ; Process controls ; Simulation ; Studies</subject><ispartof>Computers & industrial engineering, 2009-08, Vol.57 (1), p.401-407</ispartof><rights>2009 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Aug 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6821a0f58d21f4f4369b2215551ea62b4f6f2b4a98bb552b664b4fcb898672a83</citedby><cites>FETCH-LOGICAL-c387t-6821a0f58d21f4f4369b2215551ea62b4f6f2b4a98bb552b664b4fcb898672a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360835209000035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Sheu, Shey-Huei</creatorcontrib><creatorcontrib>Tai, Shih-Hung</creatorcontrib><creatorcontrib>Hsieh, Yu-Tai</creatorcontrib><creatorcontrib>Lin, Tse-Chieh</creatorcontrib><title>Monitoring process mean and variability with generally weighted moving average control charts</title><title>Computers & industrial engineering</title><description>This study investigates control charts for simultaneous monitoring of process mean and process variability when an individual observation is taken at each sampling point. A combined scheme consisting of a two-side generally weighted moving average (GWMA) mean chart and a two-side GWMA variance chart is developed. This new combined scheme will compare with the exponentially weighted moving average (EWMA) single charts and a combined EWMA chart. It is shown that the combination of the GWMA charts is more sensitive than the combination of the EWMA charts for detecting small shifts in the process mean and variance. An example and a simple procedure for the design of a combined GWMA chart are also given to illustrate this study.</description><subject>Average run length</subject><subject>Control chart</subject><subject>Control charts</subject><subject>Exponentially weighted moving average</subject><subject>Generally weighted moving average</subject><subject>Process controls</subject><subject>Simulation</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kc1qGzEUhUVoIG7SB8hOZNGuZqp_a-iqmKQJuGSTLIvQaO7YMmPJlWQHv31k3FUX2egi3e8cODoI3VLSUkLV903rPLSMEN1S1hJKLtCM6nnXECnJJzQjXJFGc8mu0OecN4QQITs6Q39-x-BLTD6s8C5FBznjLdiAbRjwwSZvez_5csRvvqzxCgIkO031Cn61LjDgbTyctPZQFyvALoaS4oTd2qaSb9DlaKcMX_7Na_T6cP-yeGyWz7-eFj-XjeN6XhqlGbVklHpgdBSj4KrrGaNSSgpWsV6Maqyn7XTfS8l6pUR9c73utJozq_k1-nb2rRH-7iEXs_XZwTTZAHGfTVfjc8rnvJJfPyS5ELxTXFbw7j9wE_cp1BSGVSfRCXlyo2fIpZhzgtHskt_adDSUmFMvZmNqL-bUi6HM1F6q5sdZA_VDDh6SyRUJDgafwBUzRP-B-h0m3pWN</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Sheu, Shey-Huei</creator><creator>Tai, Shih-Hung</creator><creator>Hsieh, Yu-Tai</creator><creator>Lin, Tse-Chieh</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090801</creationdate><title>Monitoring process mean and variability with generally weighted moving average control charts</title><author>Sheu, Shey-Huei ; Tai, Shih-Hung ; Hsieh, Yu-Tai ; Lin, Tse-Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6821a0f58d21f4f4369b2215551ea62b4f6f2b4a98bb552b664b4fcb898672a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Average run length</topic><topic>Control chart</topic><topic>Control charts</topic><topic>Exponentially weighted moving average</topic><topic>Generally weighted moving average</topic><topic>Process controls</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheu, Shey-Huei</creatorcontrib><creatorcontrib>Tai, Shih-Hung</creatorcontrib><creatorcontrib>Hsieh, Yu-Tai</creatorcontrib><creatorcontrib>Lin, Tse-Chieh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheu, Shey-Huei</au><au>Tai, Shih-Hung</au><au>Hsieh, Yu-Tai</au><au>Lin, Tse-Chieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring process mean and variability with generally weighted moving average control charts</atitle><jtitle>Computers & industrial engineering</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>57</volume><issue>1</issue><spage>401</spage><epage>407</epage><pages>401-407</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>This study investigates control charts for simultaneous monitoring of process mean and process variability when an individual observation is taken at each sampling point. A combined scheme consisting of a two-side generally weighted moving average (GWMA) mean chart and a two-side GWMA variance chart is developed. This new combined scheme will compare with the exponentially weighted moving average (EWMA) single charts and a combined EWMA chart. It is shown that the combination of the GWMA charts is more sensitive than the combination of the EWMA charts for detecting small shifts in the process mean and variance. An example and a simple procedure for the design of a combined GWMA chart are also given to illustrate this study.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2008.12.010</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-8352 |
ispartof | Computers & industrial engineering, 2009-08, Vol.57 (1), p.401-407 |
issn | 0360-8352 1879-0550 |
language | eng |
recordid | cdi_proquest_miscellaneous_903631373 |
source | Elsevier ScienceDirect Journals |
subjects | Average run length Control chart Control charts Exponentially weighted moving average Generally weighted moving average Process controls Simulation Studies |
title | Monitoring process mean and variability with generally weighted moving average control charts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20process%20mean%20and%20variability%20with%20generally%20weighted%20moving%20average%20control%20charts&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Sheu,%20Shey-Huei&rft.date=2009-08-01&rft.volume=57&rft.issue=1&rft.spage=401&rft.epage=407&rft.pages=401-407&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2008.12.010&rft_dat=%3Cproquest_cross%3E1746794061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213749453&rft_id=info:pmid/&rft_els_id=S0360835209000035&rfr_iscdi=true |