Monitoring process mean and variability with generally weighted moving average control charts

This study investigates control charts for simultaneous monitoring of process mean and process variability when an individual observation is taken at each sampling point. A combined scheme consisting of a two-side generally weighted moving average (GWMA) mean chart and a two-side GWMA variance chart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 2009-08, Vol.57 (1), p.401-407
Hauptverfasser: Sheu, Shey-Huei, Tai, Shih-Hung, Hsieh, Yu-Tai, Lin, Tse-Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 1
container_start_page 401
container_title Computers & industrial engineering
container_volume 57
creator Sheu, Shey-Huei
Tai, Shih-Hung
Hsieh, Yu-Tai
Lin, Tse-Chieh
description This study investigates control charts for simultaneous monitoring of process mean and process variability when an individual observation is taken at each sampling point. A combined scheme consisting of a two-side generally weighted moving average (GWMA) mean chart and a two-side GWMA variance chart is developed. This new combined scheme will compare with the exponentially weighted moving average (EWMA) single charts and a combined EWMA chart. It is shown that the combination of the GWMA charts is more sensitive than the combination of the EWMA charts for detecting small shifts in the process mean and variance. An example and a simple procedure for the design of a combined GWMA chart are also given to illustrate this study.
doi_str_mv 10.1016/j.cie.2008.12.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903631373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835209000035</els_id><sourcerecordid>1746794061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6821a0f58d21f4f4369b2215551ea62b4f6f2b4a98bb552b664b4fcb898672a83</originalsourceid><addsrcrecordid>eNp9kc1qGzEUhUVoIG7SB8hOZNGuZqp_a-iqmKQJuGSTLIvQaO7YMmPJlWQHv31k3FUX2egi3e8cODoI3VLSUkLV903rPLSMEN1S1hJKLtCM6nnXECnJJzQjXJFGc8mu0OecN4QQITs6Q39-x-BLTD6s8C5FBznjLdiAbRjwwSZvez_5csRvvqzxCgIkO031Cn61LjDgbTyctPZQFyvALoaS4oTd2qaSb9DlaKcMX_7Na_T6cP-yeGyWz7-eFj-XjeN6XhqlGbVklHpgdBSj4KrrGaNSSgpWsV6Maqyn7XTfS8l6pUR9c73utJozq_k1-nb2rRH-7iEXs_XZwTTZAHGfTVfjc8rnvJJfPyS5ELxTXFbw7j9wE_cp1BSGVSfRCXlyo2fIpZhzgtHskt_adDSUmFMvZmNqL-bUi6HM1F6q5sdZA_VDDh6SyRUJDgafwBUzRP-B-h0m3pWN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213749453</pqid></control><display><type>article</type><title>Monitoring process mean and variability with generally weighted moving average control charts</title><source>Elsevier ScienceDirect Journals</source><creator>Sheu, Shey-Huei ; Tai, Shih-Hung ; Hsieh, Yu-Tai ; Lin, Tse-Chieh</creator><creatorcontrib>Sheu, Shey-Huei ; Tai, Shih-Hung ; Hsieh, Yu-Tai ; Lin, Tse-Chieh</creatorcontrib><description>This study investigates control charts for simultaneous monitoring of process mean and process variability when an individual observation is taken at each sampling point. A combined scheme consisting of a two-side generally weighted moving average (GWMA) mean chart and a two-side GWMA variance chart is developed. This new combined scheme will compare with the exponentially weighted moving average (EWMA) single charts and a combined EWMA chart. It is shown that the combination of the GWMA charts is more sensitive than the combination of the EWMA charts for detecting small shifts in the process mean and variance. An example and a simple procedure for the design of a combined GWMA chart are also given to illustrate this study.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2008.12.010</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Average run length ; Control chart ; Control charts ; Exponentially weighted moving average ; Generally weighted moving average ; Process controls ; Simulation ; Studies</subject><ispartof>Computers &amp; industrial engineering, 2009-08, Vol.57 (1), p.401-407</ispartof><rights>2009 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Aug 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6821a0f58d21f4f4369b2215551ea62b4f6f2b4a98bb552b664b4fcb898672a83</citedby><cites>FETCH-LOGICAL-c387t-6821a0f58d21f4f4369b2215551ea62b4f6f2b4a98bb552b664b4fcb898672a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360835209000035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Sheu, Shey-Huei</creatorcontrib><creatorcontrib>Tai, Shih-Hung</creatorcontrib><creatorcontrib>Hsieh, Yu-Tai</creatorcontrib><creatorcontrib>Lin, Tse-Chieh</creatorcontrib><title>Monitoring process mean and variability with generally weighted moving average control charts</title><title>Computers &amp; industrial engineering</title><description>This study investigates control charts for simultaneous monitoring of process mean and process variability when an individual observation is taken at each sampling point. A combined scheme consisting of a two-side generally weighted moving average (GWMA) mean chart and a two-side GWMA variance chart is developed. This new combined scheme will compare with the exponentially weighted moving average (EWMA) single charts and a combined EWMA chart. It is shown that the combination of the GWMA charts is more sensitive than the combination of the EWMA charts for detecting small shifts in the process mean and variance. An example and a simple procedure for the design of a combined GWMA chart are also given to illustrate this study.</description><subject>Average run length</subject><subject>Control chart</subject><subject>Control charts</subject><subject>Exponentially weighted moving average</subject><subject>Generally weighted moving average</subject><subject>Process controls</subject><subject>Simulation</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kc1qGzEUhUVoIG7SB8hOZNGuZqp_a-iqmKQJuGSTLIvQaO7YMmPJlWQHv31k3FUX2egi3e8cODoI3VLSUkLV903rPLSMEN1S1hJKLtCM6nnXECnJJzQjXJFGc8mu0OecN4QQITs6Q39-x-BLTD6s8C5FBznjLdiAbRjwwSZvez_5csRvvqzxCgIkO031Cn61LjDgbTyctPZQFyvALoaS4oTd2qaSb9DlaKcMX_7Na_T6cP-yeGyWz7-eFj-XjeN6XhqlGbVklHpgdBSj4KrrGaNSSgpWsV6Maqyn7XTfS8l6pUR9c73utJozq_k1-nb2rRH-7iEXs_XZwTTZAHGfTVfjc8rnvJJfPyS5ELxTXFbw7j9wE_cp1BSGVSfRCXlyo2fIpZhzgtHskt_adDSUmFMvZmNqL-bUi6HM1F6q5sdZA_VDDh6SyRUJDgafwBUzRP-B-h0m3pWN</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Sheu, Shey-Huei</creator><creator>Tai, Shih-Hung</creator><creator>Hsieh, Yu-Tai</creator><creator>Lin, Tse-Chieh</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090801</creationdate><title>Monitoring process mean and variability with generally weighted moving average control charts</title><author>Sheu, Shey-Huei ; Tai, Shih-Hung ; Hsieh, Yu-Tai ; Lin, Tse-Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6821a0f58d21f4f4369b2215551ea62b4f6f2b4a98bb552b664b4fcb898672a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Average run length</topic><topic>Control chart</topic><topic>Control charts</topic><topic>Exponentially weighted moving average</topic><topic>Generally weighted moving average</topic><topic>Process controls</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheu, Shey-Huei</creatorcontrib><creatorcontrib>Tai, Shih-Hung</creatorcontrib><creatorcontrib>Hsieh, Yu-Tai</creatorcontrib><creatorcontrib>Lin, Tse-Chieh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheu, Shey-Huei</au><au>Tai, Shih-Hung</au><au>Hsieh, Yu-Tai</au><au>Lin, Tse-Chieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring process mean and variability with generally weighted moving average control charts</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>57</volume><issue>1</issue><spage>401</spage><epage>407</epage><pages>401-407</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>This study investigates control charts for simultaneous monitoring of process mean and process variability when an individual observation is taken at each sampling point. A combined scheme consisting of a two-side generally weighted moving average (GWMA) mean chart and a two-side GWMA variance chart is developed. This new combined scheme will compare with the exponentially weighted moving average (EWMA) single charts and a combined EWMA chart. It is shown that the combination of the GWMA charts is more sensitive than the combination of the EWMA charts for detecting small shifts in the process mean and variance. An example and a simple procedure for the design of a combined GWMA chart are also given to illustrate this study.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2008.12.010</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2009-08, Vol.57 (1), p.401-407
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_miscellaneous_903631373
source Elsevier ScienceDirect Journals
subjects Average run length
Control chart
Control charts
Exponentially weighted moving average
Generally weighted moving average
Process controls
Simulation
Studies
title Monitoring process mean and variability with generally weighted moving average control charts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20process%20mean%20and%20variability%20with%20generally%20weighted%20moving%20average%20control%20charts&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Sheu,%20Shey-Huei&rft.date=2009-08-01&rft.volume=57&rft.issue=1&rft.spage=401&rft.epage=407&rft.pages=401-407&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2008.12.010&rft_dat=%3Cproquest_cross%3E1746794061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213749453&rft_id=info:pmid/&rft_els_id=S0360835209000035&rfr_iscdi=true