Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method
The nonlinear response of functionally graded ceramic–metal plates (FGPs) under mechanical and thermal loads is investigated using the mesh-free kp-Ritz method. The nonlinear formulation is based on the first-order shear deformation plate theory and the von Kármán strains, which deal with small stra...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2009-07, Vol.198 (33), p.2796-2811 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2811 |
---|---|
container_issue | 33 |
container_start_page | 2796 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 198 |
creator | Zhao, X. Liew, K.M. |
description | The nonlinear response of functionally graded ceramic–metal plates (FGPs) under mechanical and thermal loads is investigated using the mesh-free
kp-Ritz method. The nonlinear formulation is based on the first-order shear deformation plate theory and the von Kármán strains, which deal with small strains and moderate rotations. The material properties of FGPs are assumed to be graded through the thickness direction according to a power law distribution of the volume fraction of the constituents. The approximation of the displacement field is expressed in terms of a set of mesh-free kernel particle functions. The bending stiffness of the plates is evaluated using a stabilized conforming nodal integration method, and the membrane and shear stiffnesses are computed using direct nodal integration to eliminate shear locking. The nonlinear behavior of the deflection and axial stress is studied for FGPs under thermal and mechanical loading, and the influences of the volume fraction exponent, boundary condition, and material properties on the nonlinear response of FGPs are examined. |
doi_str_mv | 10.1016/j.cma.2009.04.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903629532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782509001583</els_id><sourcerecordid>34424442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-e2aeb287197954782de2be0e13c481aadaf1901170b31f753f8759fceee6434e3</originalsourceid><addsrcrecordid>eNp9kM9LHTEQx0Ox0Kf2D-gtF9vTbvNrdxM8FVFbEAqi55CXnWie2eSZ5BVe_3pjn_TowDCXz3xn-CD0hZKeEjp-3_R2MT0jRPVE9IQMH9CKykl1jHJ5hFaEiKGbJBs-oeNSNqSVpGyF5mtIC9TsrQlhj2OKwUcwGZtowr74gpPDbhdt9Sn-Qx6ymWHG22AqFLwrPj7g-ggYAiwQa-cyAH7adre-_sUt-jHNp-ijM6HA57d5gu6vLu8ufnY3v69_Xfy46awYxtoBM7BmcqJqUoNoz87A1kCAciskNWY2jipC6UTWnLpp4E5Og3IWAEbBBfAT9O2Qu83peQel6sUXCyGYCGlXtCJ8ZGrgrJFf3yW5EEy0biA9gDanUjI4vc1-MXmvKdGv5vVGN_P61bwmQjfzbefsLdyUptVlE60v_xcZHYWSTDbu_MBBc_LHQ9bFeogWZp_BVj0n_86VFx9Tmb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34424442</pqid></control><display><type>article</type><title>Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhao, X. ; Liew, K.M.</creator><creatorcontrib>Zhao, X. ; Liew, K.M.</creatorcontrib><description>The nonlinear response of functionally graded ceramic–metal plates (FGPs) under mechanical and thermal loads is investigated using the mesh-free
kp-Ritz method. The nonlinear formulation is based on the first-order shear deformation plate theory and the von Kármán strains, which deal with small strains and moderate rotations. The material properties of FGPs are assumed to be graded through the thickness direction according to a power law distribution of the volume fraction of the constituents. The approximation of the displacement field is expressed in terms of a set of mesh-free kernel particle functions. The bending stiffness of the plates is evaluated using a stabilized conforming nodal integration method, and the membrane and shear stiffnesses are computed using direct nodal integration to eliminate shear locking. The nonlinear behavior of the deflection and axial stress is studied for FGPs under thermal and mechanical loading, and the influences of the volume fraction exponent, boundary condition, and material properties on the nonlinear response of FGPs are examined.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2009.04.005</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Computational techniques ; Element-free ; Exact sciences and technology ; Functionally graded materials ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Nonlinear analysis ; Physics ; Plates ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Von Kármán strains</subject><ispartof>Computer methods in applied mechanics and engineering, 2009-07, Vol.198 (33), p.2796-2811</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-e2aeb287197954782de2be0e13c481aadaf1901170b31f753f8759fceee6434e3</citedby><cites>FETCH-LOGICAL-c456t-e2aeb287197954782de2be0e13c481aadaf1901170b31f753f8759fceee6434e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2009.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21649828$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Liew, K.M.</creatorcontrib><title>Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method</title><title>Computer methods in applied mechanics and engineering</title><description>The nonlinear response of functionally graded ceramic–metal plates (FGPs) under mechanical and thermal loads is investigated using the mesh-free
kp-Ritz method. The nonlinear formulation is based on the first-order shear deformation plate theory and the von Kármán strains, which deal with small strains and moderate rotations. The material properties of FGPs are assumed to be graded through the thickness direction according to a power law distribution of the volume fraction of the constituents. The approximation of the displacement field is expressed in terms of a set of mesh-free kernel particle functions. The bending stiffness of the plates is evaluated using a stabilized conforming nodal integration method, and the membrane and shear stiffnesses are computed using direct nodal integration to eliminate shear locking. The nonlinear behavior of the deflection and axial stress is studied for FGPs under thermal and mechanical loading, and the influences of the volume fraction exponent, boundary condition, and material properties on the nonlinear response of FGPs are examined.</description><subject>Computational techniques</subject><subject>Element-free</subject><subject>Exact sciences and technology</subject><subject>Functionally graded materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Nonlinear analysis</subject><subject>Physics</subject><subject>Plates</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Von Kármán strains</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LHTEQx0Ox0Kf2D-gtF9vTbvNrdxM8FVFbEAqi55CXnWie2eSZ5BVe_3pjn_TowDCXz3xn-CD0hZKeEjp-3_R2MT0jRPVE9IQMH9CKykl1jHJ5hFaEiKGbJBs-oeNSNqSVpGyF5mtIC9TsrQlhj2OKwUcwGZtowr74gpPDbhdt9Sn-Qx6ymWHG22AqFLwrPj7g-ggYAiwQa-cyAH7adre-_sUt-jHNp-ijM6HA57d5gu6vLu8ufnY3v69_Xfy46awYxtoBM7BmcqJqUoNoz87A1kCAciskNWY2jipC6UTWnLpp4E5Og3IWAEbBBfAT9O2Qu83peQel6sUXCyGYCGlXtCJ8ZGrgrJFf3yW5EEy0biA9gDanUjI4vc1-MXmvKdGv5vVGN_P61bwmQjfzbefsLdyUptVlE60v_xcZHYWSTDbu_MBBc_LHQ9bFeogWZp_BVj0n_86VFx9Tmb0</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Zhao, X.</creator><creator>Liew, K.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method</title><author>Zhao, X. ; Liew, K.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-e2aeb287197954782de2be0e13c481aadaf1901170b31f753f8759fceee6434e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational techniques</topic><topic>Element-free</topic><topic>Exact sciences and technology</topic><topic>Functionally graded materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Nonlinear analysis</topic><topic>Physics</topic><topic>Plates</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Von Kármán strains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Liew, K.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, X.</au><au>Liew, K.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>198</volume><issue>33</issue><spage>2796</spage><epage>2811</epage><pages>2796-2811</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>The nonlinear response of functionally graded ceramic–metal plates (FGPs) under mechanical and thermal loads is investigated using the mesh-free
kp-Ritz method. The nonlinear formulation is based on the first-order shear deformation plate theory and the von Kármán strains, which deal with small strains and moderate rotations. The material properties of FGPs are assumed to be graded through the thickness direction according to a power law distribution of the volume fraction of the constituents. The approximation of the displacement field is expressed in terms of a set of mesh-free kernel particle functions. The bending stiffness of the plates is evaluated using a stabilized conforming nodal integration method, and the membrane and shear stiffnesses are computed using direct nodal integration to eliminate shear locking. The nonlinear behavior of the deflection and axial stress is studied for FGPs under thermal and mechanical loading, and the influences of the volume fraction exponent, boundary condition, and material properties on the nonlinear response of FGPs are examined.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2009.04.005</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2009-07, Vol.198 (33), p.2796-2811 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_903629532 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Computational techniques Element-free Exact sciences and technology Functionally graded materials Fundamental areas of phenomenology (including applications) Mathematical methods in physics Nonlinear analysis Physics Plates Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics Von Kármán strains |
title | Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrically%20nonlinear%20analysis%20of%20functionally%20graded%20plates%20using%20the%20element-free%20kp-Ritz%20method&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Zhao,%20X.&rft.date=2009-07-01&rft.volume=198&rft.issue=33&rft.spage=2796&rft.epage=2811&rft.pages=2796-2811&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2009.04.005&rft_dat=%3Cproquest_cross%3E34424442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34424442&rft_id=info:pmid/&rft_els_id=S0045782509001583&rfr_iscdi=true |