Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A

Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling 2009-08, Vol.220 (15), p.1787-1796
Hauptverfasser: Coops, Nicholas C., Waring, Richard H., Schroeder, Todd A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1796
container_issue 15
container_start_page 1787
container_title Ecological modelling
container_volume 220
creator Coops, Nicholas C.
Waring, Richard H.
Schroeder, Todd A.
description Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation in four climatic-related variables: water availability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir, the most widely distributed species in the region. We apply an automated regression-tree analysis to create a suite of rules, which differentially rank the relative importance of the four climatic modifiers for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this generalized rule-based approach were encouraging, with weighted accuracy, which combines the correct prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic conditions throughout the full range of a species’ distribution should improve the basis for creating rules and the possibility of predicting future shifts in the geographic distribution of species.
doi_str_mv 10.1016/j.ecolmodel.2009.04.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903627993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380009002907</els_id><sourcerecordid>20622740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-da485d0c6854d26f2f45d9db6c4fab290fdeb79029616e4f8cc02d7bd819337b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEEsvCZ8AX4ELC2HH-HVcraJEqQIKeLceedL1K4sXjLeq34iPiNFWP9ORn6ffmaeZl2VsOBQdefzoWaPw4eYtjIQC6AmQBonuWbXjbiLwBUT_PNlCCzMsW4GX2iugIAFy0YpP93fupd7Obb5hmNzhjcIadgjdIlPea0C4_ezbR3bp4x-5zmJ5twinq6Cg6o0dmRk3khqSj8zObMB68ZdEnN1pnIosHXDThbHD196v2A4sBkdEJjUNibr5nf2izjGPffIiHP0jxI7sufha719mLQY-Ebx7ebXb95fOv_WV-9f3i6353lZsKqphbLdvKgqnbSlpRD2KQle1sXxs56F50MFjsmy4dquY1yqE1BoRtetvyriybvtxmH9a5af3f55SvJkcGx1HP6M-kOihr0XQJ3mbv_0uWUkLV8epJUEAtRCMhgc0KmuCJAg7qFNykw53ioJbS1VE9lq6W0hVIlXZJzncPEZpSLUPQs3H0aBe8lgIkT9xu5TCd8NZhUJSOn-qwLqCJynr3ZNY_u-fJ6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20622740</pqid></control><display><type>article</type><title>Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A</title><source>Elsevier ScienceDirect Journals</source><creator>Coops, Nicholas C. ; Waring, Richard H. ; Schroeder, Todd A.</creator><creatorcontrib>Coops, Nicholas C. ; Waring, Richard H. ; Schroeder, Todd A.</creatorcontrib><description>Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation in four climatic-related variables: water availability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir, the most widely distributed species in the region. We apply an automated regression-tree analysis to create a suite of rules, which differentially rank the relative importance of the four climatic modifiers for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this generalized rule-based approach were encouraging, with weighted accuracy, which combines the correct prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic conditions throughout the full range of a species’ distribution should improve the basis for creating rules and the possibility of predicting future shifts in the geographic distribution of species.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2009.04.029</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3-PG model ; Animal, plant and microbial ecology ; Biological and medical sciences ; Climate change ; Climatology. Bioclimatology. Climate change ; Douglas-fir ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Lodgepole pine ; Meteorology ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Ponderosa pine ; Regression-tree analysis ; Sitka spruce ; US Forest Inventory and Analysis ; Western hemlock ; Western juniper</subject><ispartof>Ecological modelling, 2009-08, Vol.220 (15), p.1787-1796</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-da485d0c6854d26f2f45d9db6c4fab290fdeb79029616e4f8cc02d7bd819337b3</citedby><cites>FETCH-LOGICAL-c505t-da485d0c6854d26f2f45d9db6c4fab290fdeb79029616e4f8cc02d7bd819337b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecolmodel.2009.04.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21642041$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Coops, Nicholas C.</creatorcontrib><creatorcontrib>Waring, Richard H.</creatorcontrib><creatorcontrib>Schroeder, Todd A.</creatorcontrib><title>Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A</title><title>Ecological modelling</title><description>Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation in four climatic-related variables: water availability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir, the most widely distributed species in the region. We apply an automated regression-tree analysis to create a suite of rules, which differentially rank the relative importance of the four climatic modifiers for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this generalized rule-based approach were encouraging, with weighted accuracy, which combines the correct prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic conditions throughout the full range of a species’ distribution should improve the basis for creating rules and the possibility of predicting future shifts in the geographic distribution of species.</description><subject>3-PG model</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Climate change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Douglas-fir</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Lodgepole pine</subject><subject>Meteorology</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Ponderosa pine</subject><subject>Regression-tree analysis</subject><subject>Sitka spruce</subject><subject>US Forest Inventory and Analysis</subject><subject>Western hemlock</subject><subject>Western juniper</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxSMEEsvCZ8AX4ELC2HH-HVcraJEqQIKeLceedL1K4sXjLeq34iPiNFWP9ORn6ffmaeZl2VsOBQdefzoWaPw4eYtjIQC6AmQBonuWbXjbiLwBUT_PNlCCzMsW4GX2iugIAFy0YpP93fupd7Obb5hmNzhjcIadgjdIlPea0C4_ezbR3bp4x-5zmJ5twinq6Cg6o0dmRk3khqSj8zObMB68ZdEnN1pnIosHXDThbHD196v2A4sBkdEJjUNibr5nf2izjGPffIiHP0jxI7sufha719mLQY-Ebx7ebXb95fOv_WV-9f3i6353lZsKqphbLdvKgqnbSlpRD2KQle1sXxs56F50MFjsmy4dquY1yqE1BoRtetvyriybvtxmH9a5af3f55SvJkcGx1HP6M-kOihr0XQJ3mbv_0uWUkLV8epJUEAtRCMhgc0KmuCJAg7qFNykw53ioJbS1VE9lq6W0hVIlXZJzncPEZpSLUPQs3H0aBe8lgIkT9xu5TCd8NZhUJSOn-qwLqCJynr3ZNY_u-fJ6w</recordid><startdate>20090810</startdate><enddate>20090810</enddate><creator>Coops, Nicholas C.</creator><creator>Waring, Richard H.</creator><creator>Schroeder, Todd A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090810</creationdate><title>Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A</title><author>Coops, Nicholas C. ; Waring, Richard H. ; Schroeder, Todd A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-da485d0c6854d26f2f45d9db6c4fab290fdeb79029616e4f8cc02d7bd819337b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>3-PG model</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Climate change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Douglas-fir</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Lodgepole pine</topic><topic>Meteorology</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Ponderosa pine</topic><topic>Regression-tree analysis</topic><topic>Sitka spruce</topic><topic>US Forest Inventory and Analysis</topic><topic>Western hemlock</topic><topic>Western juniper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coops, Nicholas C.</creatorcontrib><creatorcontrib>Waring, Richard H.</creatorcontrib><creatorcontrib>Schroeder, Todd A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coops, Nicholas C.</au><au>Waring, Richard H.</au><au>Schroeder, Todd A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A</atitle><jtitle>Ecological modelling</jtitle><date>2009-08-10</date><risdate>2009</risdate><volume>220</volume><issue>15</issue><spage>1787</spage><epage>1796</epage><pages>1787-1796</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation in four climatic-related variables: water availability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir, the most widely distributed species in the region. We apply an automated regression-tree analysis to create a suite of rules, which differentially rank the relative importance of the four climatic modifiers for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this generalized rule-based approach were encouraging, with weighted accuracy, which combines the correct prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic conditions throughout the full range of a species’ distribution should improve the basis for creating rules and the possibility of predicting future shifts in the geographic distribution of species.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2009.04.029</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 2009-08, Vol.220 (15), p.1787-1796
issn 0304-3800
1872-7026
language eng
recordid cdi_proquest_miscellaneous_903627993
source Elsevier ScienceDirect Journals
subjects 3-PG model
Animal, plant and microbial ecology
Biological and medical sciences
Climate change
Climatology. Bioclimatology. Climate change
Douglas-fir
Earth, ocean, space
Exact sciences and technology
External geophysics
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Lodgepole pine
Meteorology
Methods and techniques (sampling, tagging, trapping, modelling...)
Ponderosa pine
Regression-tree analysis
Sitka spruce
US Forest Inventory and Analysis
Western hemlock
Western juniper
title Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20a%20generic%20process-based%20productivity%20model%20and%20a%20statistical%20classification%20method%20to%20predict%20the%20presence%20and%20absence%20of%20tree%20species%20in%20the%20Pacific%20Northwest,%20U.S.A&rft.jtitle=Ecological%20modelling&rft.au=Coops,%20Nicholas%20C.&rft.date=2009-08-10&rft.volume=220&rft.issue=15&rft.spage=1787&rft.epage=1796&rft.pages=1787-1796&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/j.ecolmodel.2009.04.029&rft_dat=%3Cproquest_cross%3E20622740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20622740&rft_id=info:pmid/&rft_els_id=S0304380009002907&rfr_iscdi=true