Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A
Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a...
Gespeichert in:
Veröffentlicht in: | Ecological modelling 2009-08, Vol.220 (15), p.1787-1796 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1796 |
---|---|
container_issue | 15 |
container_start_page | 1787 |
container_title | Ecological modelling |
container_volume | 220 |
creator | Coops, Nicholas C. Waring, Richard H. Schroeder, Todd A. |
description | Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation in four climatic-related variables: water availability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir, the most widely distributed species in the region. We apply an automated regression-tree analysis to create a suite of rules, which differentially rank the relative importance of the four climatic modifiers for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this generalized rule-based approach were encouraging, with weighted accuracy, which combines the correct prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic conditions throughout the full range of a species’ distribution should improve the basis for creating rules and the possibility of predicting future shifts in the geographic distribution of species. |
doi_str_mv | 10.1016/j.ecolmodel.2009.04.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903627993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380009002907</els_id><sourcerecordid>20622740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-da485d0c6854d26f2f45d9db6c4fab290fdeb79029616e4f8cc02d7bd819337b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEEsvCZ8AX4ELC2HH-HVcraJEqQIKeLceedL1K4sXjLeq34iPiNFWP9ORn6ffmaeZl2VsOBQdefzoWaPw4eYtjIQC6AmQBonuWbXjbiLwBUT_PNlCCzMsW4GX2iugIAFy0YpP93fupd7Obb5hmNzhjcIadgjdIlPea0C4_ezbR3bp4x-5zmJ5twinq6Cg6o0dmRk3khqSj8zObMB68ZdEnN1pnIosHXDThbHD196v2A4sBkdEJjUNibr5nf2izjGPffIiHP0jxI7sufha719mLQY-Ebx7ebXb95fOv_WV-9f3i6353lZsKqphbLdvKgqnbSlpRD2KQle1sXxs56F50MFjsmy4dquY1yqE1BoRtetvyriybvtxmH9a5af3f55SvJkcGx1HP6M-kOihr0XQJ3mbv_0uWUkLV8epJUEAtRCMhgc0KmuCJAg7qFNykw53ioJbS1VE9lq6W0hVIlXZJzncPEZpSLUPQs3H0aBe8lgIkT9xu5TCd8NZhUJSOn-qwLqCJynr3ZNY_u-fJ6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20622740</pqid></control><display><type>article</type><title>Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A</title><source>Elsevier ScienceDirect Journals</source><creator>Coops, Nicholas C. ; Waring, Richard H. ; Schroeder, Todd A.</creator><creatorcontrib>Coops, Nicholas C. ; Waring, Richard H. ; Schroeder, Todd A.</creatorcontrib><description>Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation in four climatic-related variables: water availability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir, the most widely distributed species in the region. We apply an automated regression-tree analysis to create a suite of rules, which differentially rank the relative importance of the four climatic modifiers for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this generalized rule-based approach were encouraging, with weighted accuracy, which combines the correct prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic conditions throughout the full range of a species’ distribution should improve the basis for creating rules and the possibility of predicting future shifts in the geographic distribution of species.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2009.04.029</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3-PG model ; Animal, plant and microbial ecology ; Biological and medical sciences ; Climate change ; Climatology. Bioclimatology. Climate change ; Douglas-fir ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Lodgepole pine ; Meteorology ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Ponderosa pine ; Regression-tree analysis ; Sitka spruce ; US Forest Inventory and Analysis ; Western hemlock ; Western juniper</subject><ispartof>Ecological modelling, 2009-08, Vol.220 (15), p.1787-1796</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-da485d0c6854d26f2f45d9db6c4fab290fdeb79029616e4f8cc02d7bd819337b3</citedby><cites>FETCH-LOGICAL-c505t-da485d0c6854d26f2f45d9db6c4fab290fdeb79029616e4f8cc02d7bd819337b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecolmodel.2009.04.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21642041$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Coops, Nicholas C.</creatorcontrib><creatorcontrib>Waring, Richard H.</creatorcontrib><creatorcontrib>Schroeder, Todd A.</creatorcontrib><title>Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A</title><title>Ecological modelling</title><description>Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation in four climatic-related variables: water availability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir, the most widely distributed species in the region. We apply an automated regression-tree analysis to create a suite of rules, which differentially rank the relative importance of the four climatic modifiers for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this generalized rule-based approach were encouraging, with weighted accuracy, which combines the correct prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic conditions throughout the full range of a species’ distribution should improve the basis for creating rules and the possibility of predicting future shifts in the geographic distribution of species.</description><subject>3-PG model</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Climate change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Douglas-fir</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Lodgepole pine</subject><subject>Meteorology</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Ponderosa pine</subject><subject>Regression-tree analysis</subject><subject>Sitka spruce</subject><subject>US Forest Inventory and Analysis</subject><subject>Western hemlock</subject><subject>Western juniper</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxSMEEsvCZ8AX4ELC2HH-HVcraJEqQIKeLceedL1K4sXjLeq34iPiNFWP9ORn6ffmaeZl2VsOBQdefzoWaPw4eYtjIQC6AmQBonuWbXjbiLwBUT_PNlCCzMsW4GX2iugIAFy0YpP93fupd7Obb5hmNzhjcIadgjdIlPea0C4_ezbR3bp4x-5zmJ5twinq6Cg6o0dmRk3khqSj8zObMB68ZdEnN1pnIosHXDThbHD196v2A4sBkdEJjUNibr5nf2izjGPffIiHP0jxI7sufha719mLQY-Ebx7ebXb95fOv_WV-9f3i6353lZsKqphbLdvKgqnbSlpRD2KQle1sXxs56F50MFjsmy4dquY1yqE1BoRtetvyriybvtxmH9a5af3f55SvJkcGx1HP6M-kOihr0XQJ3mbv_0uWUkLV8epJUEAtRCMhgc0KmuCJAg7qFNykw53ioJbS1VE9lq6W0hVIlXZJzncPEZpSLUPQs3H0aBe8lgIkT9xu5TCd8NZhUJSOn-qwLqCJynr3ZNY_u-fJ6w</recordid><startdate>20090810</startdate><enddate>20090810</enddate><creator>Coops, Nicholas C.</creator><creator>Waring, Richard H.</creator><creator>Schroeder, Todd A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090810</creationdate><title>Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A</title><author>Coops, Nicholas C. ; Waring, Richard H. ; Schroeder, Todd A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-da485d0c6854d26f2f45d9db6c4fab290fdeb79029616e4f8cc02d7bd819337b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>3-PG model</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Climate change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Douglas-fir</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Lodgepole pine</topic><topic>Meteorology</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Ponderosa pine</topic><topic>Regression-tree analysis</topic><topic>Sitka spruce</topic><topic>US Forest Inventory and Analysis</topic><topic>Western hemlock</topic><topic>Western juniper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coops, Nicholas C.</creatorcontrib><creatorcontrib>Waring, Richard H.</creatorcontrib><creatorcontrib>Schroeder, Todd A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coops, Nicholas C.</au><au>Waring, Richard H.</au><au>Schroeder, Todd A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A</atitle><jtitle>Ecological modelling</jtitle><date>2009-08-10</date><risdate>2009</risdate><volume>220</volume><issue>15</issue><spage>1787</spage><epage>1796</epage><pages>1787-1796</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation in four climatic-related variables: water availability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir, the most widely distributed species in the region. We apply an automated regression-tree analysis to create a suite of rules, which differentially rank the relative importance of the four climatic modifiers for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this generalized rule-based approach were encouraging, with weighted accuracy, which combines the correct prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic conditions throughout the full range of a species’ distribution should improve the basis for creating rules and the possibility of predicting future shifts in the geographic distribution of species.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2009.04.029</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3800 |
ispartof | Ecological modelling, 2009-08, Vol.220 (15), p.1787-1796 |
issn | 0304-3800 1872-7026 |
language | eng |
recordid | cdi_proquest_miscellaneous_903627993 |
source | Elsevier ScienceDirect Journals |
subjects | 3-PG model Animal, plant and microbial ecology Biological and medical sciences Climate change Climatology. Bioclimatology. Climate change Douglas-fir Earth, ocean, space Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology General aspects. Techniques Lodgepole pine Meteorology Methods and techniques (sampling, tagging, trapping, modelling...) Ponderosa pine Regression-tree analysis Sitka spruce US Forest Inventory and Analysis Western hemlock Western juniper |
title | Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20a%20generic%20process-based%20productivity%20model%20and%20a%20statistical%20classification%20method%20to%20predict%20the%20presence%20and%20absence%20of%20tree%20species%20in%20the%20Pacific%20Northwest,%20U.S.A&rft.jtitle=Ecological%20modelling&rft.au=Coops,%20Nicholas%20C.&rft.date=2009-08-10&rft.volume=220&rft.issue=15&rft.spage=1787&rft.epage=1796&rft.pages=1787-1796&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/j.ecolmodel.2009.04.029&rft_dat=%3Cproquest_cross%3E20622740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20622740&rft_id=info:pmid/&rft_els_id=S0304380009002907&rfr_iscdi=true |