Implementation and Experimental Verification of a Smart Antenna System Operating at 60 GHz Band

With the introduction of the unlicensed spectrum at the 60 GHz range, the development of communication systems with data rates in Gb/s range has become feasible. However, there are quite significant challenges at this frequency range such as high propagation loss, oxygen absorption, antenna alignmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2008-09, Vol.56 (9), p.2790-2800
Hauptverfasser: Celik, N., Iskander, M.F., Emrick, R., Franson, S.J., Holmes, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the introduction of the unlicensed spectrum at the 60 GHz range, the development of communication systems with data rates in Gb/s range has become feasible. However, there are quite significant challenges at this frequency range such as high propagation loss, oxygen absorption, antenna alignment and unavailability of high-gain, high power circuit elements. In this paper we present a novel 2-channel hybrid smart-antenna system operating at 60 GHz band which can be used with an antenna switching system to improve the signal power performance and to serve as an automated alignment system. The critical system parameters for a smart-antenna system at this frequency are the transmitter to receiver distance, element spacing, and antenna beamwidth. As the widely known beamforming assumptions may not hold for some configurations, a more general beamforming formulation is given in the paper to serve as a guideline for system designers. The twist angle of array elements is introduced as a new array design parameter. By selecting the optimal twist angle to help overlap radiation patterns, the fine alignment of the transmit and receive beams is established electronically using beamforming, thus reducing the cost of deployment and maintenance of the 60 GHz indoor communication systems.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2008.928785