A cyclic basis for closed curve and surface modeling

We define a cyclic basis for the vectorspace of truncated Fourier series. The basis has several nice properties, such as positivity, summing to 1, that are often required in computer aided design, and that are used by designers in order to control curves by manipulating control points. Our curves ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided geometric design 2009-06, Vol.26 (5), p.528-546
Hauptverfasser: Róth, Ágoston, Juhász, Imre, Schicho, Josef, Hoffmann, Miklós
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 5
container_start_page 528
container_title Computer aided geometric design
container_volume 26
creator Róth, Ágoston
Juhász, Imre
Schicho, Josef
Hoffmann, Miklós
description We define a cyclic basis for the vectorspace of truncated Fourier series. The basis has several nice properties, such as positivity, summing to 1, that are often required in computer aided design, and that are used by designers in order to control curves by manipulating control points. Our curves have cyclic symmetry, i.e. the control points can be cyclically arranged and the curve does not change when the control points are cyclically permuted. We provide an explicit formula for the elevation of the degree from n to n + r , r ⩾ 1 and prove that the control polygon of the degree elevated curve converges to the curve itself if r tends to infinity. Variation diminishing property of the curve is also verified. The proposed basis functions are suitable for the description of closed curves and surfaces with C ∞ continuity at all of their points.
doi_str_mv 10.1016/j.cagd.2009.02.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903626046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167839609000326</els_id><sourcerecordid>34417843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-87899521a48dcaffae4b82f2745c92e4dc65b7492d68a2eaead779db6cd90a373</originalsourceid><addsrcrecordid>eNp90DtLA0EQwPFFFIyPL2B1jVrdua_sA2yC-IKAjdbLZHYubLjc6W4i5Nt7IWJpNc1vZuDP2JXgjeDC3K0ahGVsJOe-4bLhXB6xiXDW11IpecwmI7K1U96csrNSVnwUwpsJ07MKd9glrBZQUqnaIVfYDYVihdv8TRX0sSrb3AJStR4idalfXrCTFrpCl7_znH08Pb4_vNTzt-fXh9m8RuXVpnbWeT-VArSLCG0LpBdOttLqKXpJOqKZLqz2MhoHkoAgWuvjwmD0HJRV5-z2cPczD19bKpuwTgWp66CnYVuC58pIw7UZ5c2_UmktrNNqhPIAMQ-lZGrDZ05ryLsgeNinDKuwTxn2KQOXYQw1Ll3_XoeC0LUZekzlb1OKKTdeuNHdHxyNUb4T5VAwUY8UUybchDik_978AAjjiF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34417843</pqid></control><display><type>article</type><title>A cyclic basis for closed curve and surface modeling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Róth, Ágoston ; Juhász, Imre ; Schicho, Josef ; Hoffmann, Miklós</creator><creatorcontrib>Róth, Ágoston ; Juhász, Imre ; Schicho, Josef ; Hoffmann, Miklós</creatorcontrib><description>We define a cyclic basis for the vectorspace of truncated Fourier series. The basis has several nice properties, such as positivity, summing to 1, that are often required in computer aided design, and that are used by designers in order to control curves by manipulating control points. Our curves have cyclic symmetry, i.e. the control points can be cyclically arranged and the curve does not change when the control points are cyclically permuted. We provide an explicit formula for the elevation of the degree from n to n + r , r ⩾ 1 and prove that the control polygon of the degree elevated curve converges to the curve itself if r tends to infinity. Variation diminishing property of the curve is also verified. The proposed basis functions are suitable for the description of closed curves and surfaces with C ∞ continuity at all of their points.</description><identifier>ISSN: 0167-8396</identifier><identifier>EISSN: 1879-2332</identifier><identifier>DOI: 10.1016/j.cagd.2009.02.002</identifier><identifier>CODEN: CAGDEX</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Closed curve ; Closed surface ; Computer aided design ; Computer science; control theory; systems ; Degree elevation ; Exact sciences and technology ; Mechanical engineering. Machine design ; Software ; Trigonometric basis function ; Variation diminishing</subject><ispartof>Computer aided geometric design, 2009-06, Vol.26 (5), p.528-546</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-87899521a48dcaffae4b82f2745c92e4dc65b7492d68a2eaead779db6cd90a373</citedby><cites>FETCH-LOGICAL-c393t-87899521a48dcaffae4b82f2745c92e4dc65b7492d68a2eaead779db6cd90a373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cagd.2009.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21506918$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Róth, Ágoston</creatorcontrib><creatorcontrib>Juhász, Imre</creatorcontrib><creatorcontrib>Schicho, Josef</creatorcontrib><creatorcontrib>Hoffmann, Miklós</creatorcontrib><title>A cyclic basis for closed curve and surface modeling</title><title>Computer aided geometric design</title><description>We define a cyclic basis for the vectorspace of truncated Fourier series. The basis has several nice properties, such as positivity, summing to 1, that are often required in computer aided design, and that are used by designers in order to control curves by manipulating control points. Our curves have cyclic symmetry, i.e. the control points can be cyclically arranged and the curve does not change when the control points are cyclically permuted. We provide an explicit formula for the elevation of the degree from n to n + r , r ⩾ 1 and prove that the control polygon of the degree elevated curve converges to the curve itself if r tends to infinity. Variation diminishing property of the curve is also verified. The proposed basis functions are suitable for the description of closed curves and surfaces with C ∞ continuity at all of their points.</description><subject>Applied sciences</subject><subject>Closed curve</subject><subject>Closed surface</subject><subject>Computer aided design</subject><subject>Computer science; control theory; systems</subject><subject>Degree elevation</subject><subject>Exact sciences and technology</subject><subject>Mechanical engineering. Machine design</subject><subject>Software</subject><subject>Trigonometric basis function</subject><subject>Variation diminishing</subject><issn>0167-8396</issn><issn>1879-2332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90DtLA0EQwPFFFIyPL2B1jVrdua_sA2yC-IKAjdbLZHYubLjc6W4i5Nt7IWJpNc1vZuDP2JXgjeDC3K0ahGVsJOe-4bLhXB6xiXDW11IpecwmI7K1U96csrNSVnwUwpsJ07MKd9glrBZQUqnaIVfYDYVihdv8TRX0sSrb3AJStR4idalfXrCTFrpCl7_znH08Pb4_vNTzt-fXh9m8RuXVpnbWeT-VArSLCG0LpBdOttLqKXpJOqKZLqz2MhoHkoAgWuvjwmD0HJRV5-z2cPczD19bKpuwTgWp66CnYVuC58pIw7UZ5c2_UmktrNNqhPIAMQ-lZGrDZ05ryLsgeNinDKuwTxn2KQOXYQw1Ll3_XoeC0LUZekzlb1OKKTdeuNHdHxyNUb4T5VAwUY8UUybchDik_978AAjjiF0</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Róth, Ágoston</creator><creator>Juhász, Imre</creator><creator>Schicho, Josef</creator><creator>Hoffmann, Miklós</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090601</creationdate><title>A cyclic basis for closed curve and surface modeling</title><author>Róth, Ágoston ; Juhász, Imre ; Schicho, Josef ; Hoffmann, Miklós</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-87899521a48dcaffae4b82f2745c92e4dc65b7492d68a2eaead779db6cd90a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Closed curve</topic><topic>Closed surface</topic><topic>Computer aided design</topic><topic>Computer science; control theory; systems</topic><topic>Degree elevation</topic><topic>Exact sciences and technology</topic><topic>Mechanical engineering. Machine design</topic><topic>Software</topic><topic>Trigonometric basis function</topic><topic>Variation diminishing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Róth, Ágoston</creatorcontrib><creatorcontrib>Juhász, Imre</creatorcontrib><creatorcontrib>Schicho, Josef</creatorcontrib><creatorcontrib>Hoffmann, Miklós</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided geometric design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Róth, Ágoston</au><au>Juhász, Imre</au><au>Schicho, Josef</au><au>Hoffmann, Miklós</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cyclic basis for closed curve and surface modeling</atitle><jtitle>Computer aided geometric design</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>26</volume><issue>5</issue><spage>528</spage><epage>546</epage><pages>528-546</pages><issn>0167-8396</issn><eissn>1879-2332</eissn><coden>CAGDEX</coden><abstract>We define a cyclic basis for the vectorspace of truncated Fourier series. The basis has several nice properties, such as positivity, summing to 1, that are often required in computer aided design, and that are used by designers in order to control curves by manipulating control points. Our curves have cyclic symmetry, i.e. the control points can be cyclically arranged and the curve does not change when the control points are cyclically permuted. We provide an explicit formula for the elevation of the degree from n to n + r , r ⩾ 1 and prove that the control polygon of the degree elevated curve converges to the curve itself if r tends to infinity. Variation diminishing property of the curve is also verified. The proposed basis functions are suitable for the description of closed curves and surfaces with C ∞ continuity at all of their points.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cagd.2009.02.002</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8396
ispartof Computer aided geometric design, 2009-06, Vol.26 (5), p.528-546
issn 0167-8396
1879-2332
language eng
recordid cdi_proquest_miscellaneous_903626046
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Closed curve
Closed surface
Computer aided design
Computer science
control theory
systems
Degree elevation
Exact sciences and technology
Mechanical engineering. Machine design
Software
Trigonometric basis function
Variation diminishing
title A cyclic basis for closed curve and surface modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cyclic%20basis%20for%20closed%20curve%20and%20surface%20modeling&rft.jtitle=Computer%20aided%20geometric%20design&rft.au=R%C3%B3th,%20%C3%81goston&rft.date=2009-06-01&rft.volume=26&rft.issue=5&rft.spage=528&rft.epage=546&rft.pages=528-546&rft.issn=0167-8396&rft.eissn=1879-2332&rft.coden=CAGDEX&rft_id=info:doi/10.1016/j.cagd.2009.02.002&rft_dat=%3Cproquest_cross%3E34417843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34417843&rft_id=info:pmid/&rft_els_id=S0167839609000326&rfr_iscdi=true