A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer
The present paper describes an efficient time/Laplace domain approach to analyze numerically heat conduction problems. An efficient recurrence relationship for the temperature in the time-domain, based on the Green’s functions of the model, is presented. Primarily, Green’s functions in nodal coordin...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2009-07, Vol.198 (33), p.2662-2672 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2672 |
---|---|
container_issue | 33 |
container_start_page | 2662 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 198 |
creator | Loureiro, F.S. Mansur, W.J. Vasconcellos, C.A.B. |
description | The present paper describes an efficient time/Laplace domain approach to analyze numerically heat conduction problems. An efficient recurrence relationship for the temperature in the time-domain, based on the Green’s functions of the model, is presented. Primarily, Green’s functions in nodal coordinates are explicitly calculated by the finite element method in the Laplace domain and subsequently, the Stehfest and the Zakian Laplace inversion schemes are employed to compute numerically Green’s functions that transfer solution at time 0 to time Δ
t. As a result, a new family of highly accurate time integration methods called ExGA-Stehfest and ExGA-Zakian is obtained. Finally, numerical examples are presented in order to illustrate the high accuracy and potentialities of these novel approaches. |
doi_str_mv | 10.1016/j.cma.2009.03.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903621590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782509001388</els_id><sourcerecordid>903621590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-79808cbe4be9d710dee1665935085c1cf64e4b2f224ff11ac5c68267053be6c03</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EEkPhAdh5A6yS-j-OWFVVaSuNxAbWluNcMx4SZ7AdpO54DV6PJ8FhKpa9m6srf-dYOgeht5S0lFB1eWzdbFtGSN8S3hLKn6Ed1V3fMMr1c7QjRMim00y-RK9yPpI6mrId-n6FDw9DCiMuYYbLvT1N1gEOscC3ZEtYIp6hHJYRDzbDiOsd1xlScHbCtwkg_vn1O2O_RrfBuSqxW-K4_jvxAWzBJdmYPaTX6IW3U4Y3j_sCff108-X6rtl_vr2_vto3TkhVmq7XRLsBxAD92FEyAlClZM8l0dJR55Wob8wzJryn1DrplGaqI5IPoBzhF-jD2feUlh8r5GLmkB1Mk42wrNn0hCtGZb-R758kuRCsE7qrID2DLi05J_DmlMJs04OhxGwFmKOpBZitAEO4qQVUzbtHc5trWr6m4EL-L2RUiV7TzfvjmYOayc8AyWQXIDoYQwJXzLiEJ375CyqKnIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34427487</pqid></control><display><type>article</type><title>A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Loureiro, F.S. ; Mansur, W.J. ; Vasconcellos, C.A.B.</creator><creatorcontrib>Loureiro, F.S. ; Mansur, W.J. ; Vasconcellos, C.A.B.</creatorcontrib><description>The present paper describes an efficient time/Laplace domain approach to analyze numerically heat conduction problems. An efficient recurrence relationship for the temperature in the time-domain, based on the Green’s functions of the model, is presented. Primarily, Green’s functions in nodal coordinates are explicitly calculated by the finite element method in the Laplace domain and subsequently, the Stehfest and the Zakian Laplace inversion schemes are employed to compute numerically Green’s functions that transfer solution at time 0 to time Δ
t. As a result, a new family of highly accurate time integration methods called ExGA-Stehfest and ExGA-Zakian is obtained. Finally, numerical examples are presented in order to illustrate the high accuracy and potentialities of these novel approaches.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2009.03.013</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Analytical and numerical techniques ; Computational techniques ; Exact sciences and technology ; ExGA ; FEM ; Fundamental areas of phenomenology (including applications) ; Heat conduction ; Heat transfer ; Laplace domain ; Mathematical methods in physics ; Numerical Green’s functions ; Physics ; Time integration</subject><ispartof>Computer methods in applied mechanics and engineering, 2009-07, Vol.198 (33), p.2662-2672</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-79808cbe4be9d710dee1665935085c1cf64e4b2f224ff11ac5c68267053be6c03</citedby><cites>FETCH-LOGICAL-c456t-79808cbe4be9d710dee1665935085c1cf64e4b2f224ff11ac5c68267053be6c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2009.03.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21649817$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Loureiro, F.S.</creatorcontrib><creatorcontrib>Mansur, W.J.</creatorcontrib><creatorcontrib>Vasconcellos, C.A.B.</creatorcontrib><title>A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer</title><title>Computer methods in applied mechanics and engineering</title><description>The present paper describes an efficient time/Laplace domain approach to analyze numerically heat conduction problems. An efficient recurrence relationship for the temperature in the time-domain, based on the Green’s functions of the model, is presented. Primarily, Green’s functions in nodal coordinates are explicitly calculated by the finite element method in the Laplace domain and subsequently, the Stehfest and the Zakian Laplace inversion schemes are employed to compute numerically Green’s functions that transfer solution at time 0 to time Δ
t. As a result, a new family of highly accurate time integration methods called ExGA-Stehfest and ExGA-Zakian is obtained. Finally, numerical examples are presented in order to illustrate the high accuracy and potentialities of these novel approaches.</description><subject>Analytical and numerical techniques</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>ExGA</subject><subject>FEM</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Laplace domain</subject><subject>Mathematical methods in physics</subject><subject>Numerical Green’s functions</subject><subject>Physics</subject><subject>Time integration</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EEkPhAdh5A6yS-j-OWFVVaSuNxAbWluNcMx4SZ7AdpO54DV6PJ8FhKpa9m6srf-dYOgeht5S0lFB1eWzdbFtGSN8S3hLKn6Ed1V3fMMr1c7QjRMim00y-RK9yPpI6mrId-n6FDw9DCiMuYYbLvT1N1gEOscC3ZEtYIp6hHJYRDzbDiOsd1xlScHbCtwkg_vn1O2O_RrfBuSqxW-K4_jvxAWzBJdmYPaTX6IW3U4Y3j_sCff108-X6rtl_vr2_vto3TkhVmq7XRLsBxAD92FEyAlClZM8l0dJR55Wob8wzJryn1DrplGaqI5IPoBzhF-jD2feUlh8r5GLmkB1Mk42wrNn0hCtGZb-R758kuRCsE7qrID2DLi05J_DmlMJs04OhxGwFmKOpBZitAEO4qQVUzbtHc5trWr6m4EL-L2RUiV7TzfvjmYOayc8AyWQXIDoYQwJXzLiEJ375CyqKnIg</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Loureiro, F.S.</creator><creator>Mansur, W.J.</creator><creator>Vasconcellos, C.A.B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer</title><author>Loureiro, F.S. ; Mansur, W.J. ; Vasconcellos, C.A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-79808cbe4be9d710dee1665935085c1cf64e4b2f224ff11ac5c68267053be6c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical and numerical techniques</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>ExGA</topic><topic>FEM</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Laplace domain</topic><topic>Mathematical methods in physics</topic><topic>Numerical Green’s functions</topic><topic>Physics</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loureiro, F.S.</creatorcontrib><creatorcontrib>Mansur, W.J.</creatorcontrib><creatorcontrib>Vasconcellos, C.A.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loureiro, F.S.</au><au>Mansur, W.J.</au><au>Vasconcellos, C.A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>198</volume><issue>33</issue><spage>2662</spage><epage>2672</epage><pages>2662-2672</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>The present paper describes an efficient time/Laplace domain approach to analyze numerically heat conduction problems. An efficient recurrence relationship for the temperature in the time-domain, based on the Green’s functions of the model, is presented. Primarily, Green’s functions in nodal coordinates are explicitly calculated by the finite element method in the Laplace domain and subsequently, the Stehfest and the Zakian Laplace inversion schemes are employed to compute numerically Green’s functions that transfer solution at time 0 to time Δ
t. As a result, a new family of highly accurate time integration methods called ExGA-Stehfest and ExGA-Zakian is obtained. Finally, numerical examples are presented in order to illustrate the high accuracy and potentialities of these novel approaches.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2009.03.013</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2009-07, Vol.198 (33), p.2662-2672 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_903621590 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Analytical and numerical techniques Computational techniques Exact sciences and technology ExGA FEM Fundamental areas of phenomenology (including applications) Heat conduction Heat transfer Laplace domain Mathematical methods in physics Numerical Green’s functions Physics Time integration |
title | A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20time/Laplace%20integration%20method%20based%20on%20numerical%20Green%E2%80%99s%20functions%20in%20conduction%20heat%20transfer&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Loureiro,%20F.S.&rft.date=2009-07-01&rft.volume=198&rft.issue=33&rft.spage=2662&rft.epage=2672&rft.pages=2662-2672&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2009.03.013&rft_dat=%3Cproquest_cross%3E903621590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34427487&rft_id=info:pmid/&rft_els_id=S0045782509001388&rfr_iscdi=true |