A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer

The present paper describes an efficient time/Laplace domain approach to analyze numerically heat conduction problems. An efficient recurrence relationship for the temperature in the time-domain, based on the Green’s functions of the model, is presented. Primarily, Green’s functions in nodal coordin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2009-07, Vol.198 (33), p.2662-2672
Hauptverfasser: Loureiro, F.S., Mansur, W.J., Vasconcellos, C.A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2672
container_issue 33
container_start_page 2662
container_title Computer methods in applied mechanics and engineering
container_volume 198
creator Loureiro, F.S.
Mansur, W.J.
Vasconcellos, C.A.B.
description The present paper describes an efficient time/Laplace domain approach to analyze numerically heat conduction problems. An efficient recurrence relationship for the temperature in the time-domain, based on the Green’s functions of the model, is presented. Primarily, Green’s functions in nodal coordinates are explicitly calculated by the finite element method in the Laplace domain and subsequently, the Stehfest and the Zakian Laplace inversion schemes are employed to compute numerically Green’s functions that transfer solution at time 0 to time Δ t. As a result, a new family of highly accurate time integration methods called ExGA-Stehfest and ExGA-Zakian is obtained. Finally, numerical examples are presented in order to illustrate the high accuracy and potentialities of these novel approaches.
doi_str_mv 10.1016/j.cma.2009.03.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903621590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782509001388</els_id><sourcerecordid>903621590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-79808cbe4be9d710dee1665935085c1cf64e4b2f224ff11ac5c68267053be6c03</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EEkPhAdh5A6yS-j-OWFVVaSuNxAbWluNcMx4SZ7AdpO54DV6PJ8FhKpa9m6srf-dYOgeht5S0lFB1eWzdbFtGSN8S3hLKn6Ed1V3fMMr1c7QjRMim00y-RK9yPpI6mrId-n6FDw9DCiMuYYbLvT1N1gEOscC3ZEtYIp6hHJYRDzbDiOsd1xlScHbCtwkg_vn1O2O_RrfBuSqxW-K4_jvxAWzBJdmYPaTX6IW3U4Y3j_sCff108-X6rtl_vr2_vto3TkhVmq7XRLsBxAD92FEyAlClZM8l0dJR55Wob8wzJryn1DrplGaqI5IPoBzhF-jD2feUlh8r5GLmkB1Mk42wrNn0hCtGZb-R758kuRCsE7qrID2DLi05J_DmlMJs04OhxGwFmKOpBZitAEO4qQVUzbtHc5trWr6m4EL-L2RUiV7TzfvjmYOayc8AyWQXIDoYQwJXzLiEJ375CyqKnIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34427487</pqid></control><display><type>article</type><title>A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Loureiro, F.S. ; Mansur, W.J. ; Vasconcellos, C.A.B.</creator><creatorcontrib>Loureiro, F.S. ; Mansur, W.J. ; Vasconcellos, C.A.B.</creatorcontrib><description>The present paper describes an efficient time/Laplace domain approach to analyze numerically heat conduction problems. An efficient recurrence relationship for the temperature in the time-domain, based on the Green’s functions of the model, is presented. Primarily, Green’s functions in nodal coordinates are explicitly calculated by the finite element method in the Laplace domain and subsequently, the Stehfest and the Zakian Laplace inversion schemes are employed to compute numerically Green’s functions that transfer solution at time 0 to time Δ t. As a result, a new family of highly accurate time integration methods called ExGA-Stehfest and ExGA-Zakian is obtained. Finally, numerical examples are presented in order to illustrate the high accuracy and potentialities of these novel approaches.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2009.03.013</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Analytical and numerical techniques ; Computational techniques ; Exact sciences and technology ; ExGA ; FEM ; Fundamental areas of phenomenology (including applications) ; Heat conduction ; Heat transfer ; Laplace domain ; Mathematical methods in physics ; Numerical Green’s functions ; Physics ; Time integration</subject><ispartof>Computer methods in applied mechanics and engineering, 2009-07, Vol.198 (33), p.2662-2672</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-79808cbe4be9d710dee1665935085c1cf64e4b2f224ff11ac5c68267053be6c03</citedby><cites>FETCH-LOGICAL-c456t-79808cbe4be9d710dee1665935085c1cf64e4b2f224ff11ac5c68267053be6c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2009.03.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21649817$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Loureiro, F.S.</creatorcontrib><creatorcontrib>Mansur, W.J.</creatorcontrib><creatorcontrib>Vasconcellos, C.A.B.</creatorcontrib><title>A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer</title><title>Computer methods in applied mechanics and engineering</title><description>The present paper describes an efficient time/Laplace domain approach to analyze numerically heat conduction problems. An efficient recurrence relationship for the temperature in the time-domain, based on the Green’s functions of the model, is presented. Primarily, Green’s functions in nodal coordinates are explicitly calculated by the finite element method in the Laplace domain and subsequently, the Stehfest and the Zakian Laplace inversion schemes are employed to compute numerically Green’s functions that transfer solution at time 0 to time Δ t. As a result, a new family of highly accurate time integration methods called ExGA-Stehfest and ExGA-Zakian is obtained. Finally, numerical examples are presented in order to illustrate the high accuracy and potentialities of these novel approaches.</description><subject>Analytical and numerical techniques</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>ExGA</subject><subject>FEM</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Laplace domain</subject><subject>Mathematical methods in physics</subject><subject>Numerical Green’s functions</subject><subject>Physics</subject><subject>Time integration</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EEkPhAdh5A6yS-j-OWFVVaSuNxAbWluNcMx4SZ7AdpO54DV6PJ8FhKpa9m6srf-dYOgeht5S0lFB1eWzdbFtGSN8S3hLKn6Ed1V3fMMr1c7QjRMim00y-RK9yPpI6mrId-n6FDw9DCiMuYYbLvT1N1gEOscC3ZEtYIp6hHJYRDzbDiOsd1xlScHbCtwkg_vn1O2O_RrfBuSqxW-K4_jvxAWzBJdmYPaTX6IW3U4Y3j_sCff108-X6rtl_vr2_vto3TkhVmq7XRLsBxAD92FEyAlClZM8l0dJR55Wob8wzJryn1DrplGaqI5IPoBzhF-jD2feUlh8r5GLmkB1Mk42wrNn0hCtGZb-R758kuRCsE7qrID2DLi05J_DmlMJs04OhxGwFmKOpBZitAEO4qQVUzbtHc5trWr6m4EL-L2RUiV7TzfvjmYOayc8AyWQXIDoYQwJXzLiEJ375CyqKnIg</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Loureiro, F.S.</creator><creator>Mansur, W.J.</creator><creator>Vasconcellos, C.A.B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer</title><author>Loureiro, F.S. ; Mansur, W.J. ; Vasconcellos, C.A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-79808cbe4be9d710dee1665935085c1cf64e4b2f224ff11ac5c68267053be6c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical and numerical techniques</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>ExGA</topic><topic>FEM</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Laplace domain</topic><topic>Mathematical methods in physics</topic><topic>Numerical Green’s functions</topic><topic>Physics</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loureiro, F.S.</creatorcontrib><creatorcontrib>Mansur, W.J.</creatorcontrib><creatorcontrib>Vasconcellos, C.A.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loureiro, F.S.</au><au>Mansur, W.J.</au><au>Vasconcellos, C.A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>198</volume><issue>33</issue><spage>2662</spage><epage>2672</epage><pages>2662-2672</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>The present paper describes an efficient time/Laplace domain approach to analyze numerically heat conduction problems. An efficient recurrence relationship for the temperature in the time-domain, based on the Green’s functions of the model, is presented. Primarily, Green’s functions in nodal coordinates are explicitly calculated by the finite element method in the Laplace domain and subsequently, the Stehfest and the Zakian Laplace inversion schemes are employed to compute numerically Green’s functions that transfer solution at time 0 to time Δ t. As a result, a new family of highly accurate time integration methods called ExGA-Stehfest and ExGA-Zakian is obtained. Finally, numerical examples are presented in order to illustrate the high accuracy and potentialities of these novel approaches.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2009.03.013</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2009-07, Vol.198 (33), p.2662-2672
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_903621590
source Elsevier ScienceDirect Journals Complete
subjects Analytical and numerical techniques
Computational techniques
Exact sciences and technology
ExGA
FEM
Fundamental areas of phenomenology (including applications)
Heat conduction
Heat transfer
Laplace domain
Mathematical methods in physics
Numerical Green’s functions
Physics
Time integration
title A hybrid time/Laplace integration method based on numerical Green’s functions in conduction heat transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20time/Laplace%20integration%20method%20based%20on%20numerical%20Green%E2%80%99s%20functions%20in%20conduction%20heat%20transfer&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Loureiro,%20F.S.&rft.date=2009-07-01&rft.volume=198&rft.issue=33&rft.spage=2662&rft.epage=2672&rft.pages=2662-2672&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2009.03.013&rft_dat=%3Cproquest_cross%3E903621590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34427487&rft_id=info:pmid/&rft_els_id=S0045782509001388&rfr_iscdi=true