Blind Equalization Method Based on Sparse Bayesian Learning

A novel adaptive blind equalization method based on sparse Bayesian learning (blind relevance vector machine (RVM) equalizer) is proposed. This letter incorporates a Godard or constant modulus algorithm (CMA)-like error function into a general Bayesian framework. This Bayesian framework can obtain s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2009-04, Vol.16 (4), p.315-318
Hauptverfasser: Hwang, Kyuho, Choi, Sooyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 4
container_start_page 315
container_title IEEE signal processing letters
container_volume 16
creator Hwang, Kyuho
Choi, Sooyong
description A novel adaptive blind equalization method based on sparse Bayesian learning (blind relevance vector machine (RVM) equalizer) is proposed. This letter incorporates a Godard or constant modulus algorithm (CMA)-like error function into a general Bayesian framework. This Bayesian framework can obtain sparse solutions to regression tasks utilizing models linear in the parameters. By exploiting a probabilistic Bayesian learning framework, the sparse Bayesian learning provides the accurate model for the blind equalization, which typically utilizes fewer basis functions than the equalizer based on the popular and state-of-the-art support vector machine (SVM) - blind SVM equalizer. Simulation results show that the proposed blind RVM equalizer provides improved performances in terms of complexity, stability and intersymbol interference (ISI) and bit error rate (BER) in a linear channel and a similar BER performance in a nonlinear channel compared to the blind SVM equalizer.
doi_str_mv 10.1109/LSP.2009.2014095
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903619761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4797892</ieee_id><sourcerecordid>875079472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ed0f7d50c5b3a689c60d8aa5b9fbebedff2f12f9eac8a0c399c29becf051cd913</originalsourceid><addsrcrecordid>eNqFkU1PwzAMhiMEEmNwR-JScYBTh9M2bSxObBof0hBIg3OUpg506tqtaQ_j15NpEwcOcLH9So9t2S9j5xxGnAPezOavowgAfeAJoDhgAy6EDKM45Ye-hgxCRJDH7MS5BQBILsWA3Y6rsi6C6brXVfmlu7Kpg2fqPpsiGGtHReD1fKVbR15vyJW6Dmak27qsP07ZkdWVo7N9HrL3--nb5DGcvTw8Te5moYml6EIqwGaFACPyWKcSTQqF1FrkaHPKqbA2sjyySNpIDSZGNBHmZCwIbgrk8ZBd7-au2mbdk-vUsnSGqkrX1PROIfgbMUv_J2UmIMMkizx59ScZJwmkqZ88ZJe_wEXTt7W_V0m_MfFvlB6CHWTaxrmWrFq15VK3G8VBbe1R3h61tUft7fEtF7uWkoh-8CTDTGIUfwMc7IrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861348188</pqid></control><display><type>article</type><title>Blind Equalization Method Based on Sparse Bayesian Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Hwang, Kyuho ; Choi, Sooyong</creator><creatorcontrib>Hwang, Kyuho ; Choi, Sooyong</creatorcontrib><description>A novel adaptive blind equalization method based on sparse Bayesian learning (blind relevance vector machine (RVM) equalizer) is proposed. This letter incorporates a Godard or constant modulus algorithm (CMA)-like error function into a general Bayesian framework. This Bayesian framework can obtain sparse solutions to regression tasks utilizing models linear in the parameters. By exploiting a probabilistic Bayesian learning framework, the sparse Bayesian learning provides the accurate model for the blind equalization, which typically utilizes fewer basis functions than the equalizer based on the popular and state-of-the-art support vector machine (SVM) - blind SVM equalizer. Simulation results show that the proposed blind RVM equalizer provides improved performances in terms of complexity, stability and intersymbol interference (ISI) and bit error rate (BER) in a linear channel and a similar BER performance in a nonlinear channel compared to the blind SVM equalizer.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2009.2014095</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AWGN ; Bayesian analysis ; Bayesian methods ; Bit error rate ; Blind equalization ; Blind equalizers ; Blinds ; Channels ; constant modulus algorithm ; Cost function ; Data communication ; Equalization ; Equalizers ; Intersymbol interference ; Learning ; Machine learning ; Mathematical models ; relevance vector machine ; Signal processing algorithms ; Support vector machines</subject><ispartof>IEEE signal processing letters, 2009-04, Vol.16 (4), p.315-318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ed0f7d50c5b3a689c60d8aa5b9fbebedff2f12f9eac8a0c399c29becf051cd913</citedby><cites>FETCH-LOGICAL-c385t-ed0f7d50c5b3a689c60d8aa5b9fbebedff2f12f9eac8a0c399c29becf051cd913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4797892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4797892$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hwang, Kyuho</creatorcontrib><creatorcontrib>Choi, Sooyong</creatorcontrib><title>Blind Equalization Method Based on Sparse Bayesian Learning</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>A novel adaptive blind equalization method based on sparse Bayesian learning (blind relevance vector machine (RVM) equalizer) is proposed. This letter incorporates a Godard or constant modulus algorithm (CMA)-like error function into a general Bayesian framework. This Bayesian framework can obtain sparse solutions to regression tasks utilizing models linear in the parameters. By exploiting a probabilistic Bayesian learning framework, the sparse Bayesian learning provides the accurate model for the blind equalization, which typically utilizes fewer basis functions than the equalizer based on the popular and state-of-the-art support vector machine (SVM) - blind SVM equalizer. Simulation results show that the proposed blind RVM equalizer provides improved performances in terms of complexity, stability and intersymbol interference (ISI) and bit error rate (BER) in a linear channel and a similar BER performance in a nonlinear channel compared to the blind SVM equalizer.</description><subject>AWGN</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Bit error rate</subject><subject>Blind equalization</subject><subject>Blind equalizers</subject><subject>Blinds</subject><subject>Channels</subject><subject>constant modulus algorithm</subject><subject>Cost function</subject><subject>Data communication</subject><subject>Equalization</subject><subject>Equalizers</subject><subject>Intersymbol interference</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>relevance vector machine</subject><subject>Signal processing algorithms</subject><subject>Support vector machines</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1PwzAMhiMEEmNwR-JScYBTh9M2bSxObBof0hBIg3OUpg506tqtaQ_j15NpEwcOcLH9So9t2S9j5xxGnAPezOavowgAfeAJoDhgAy6EDKM45Ye-hgxCRJDH7MS5BQBILsWA3Y6rsi6C6brXVfmlu7Kpg2fqPpsiGGtHReD1fKVbR15vyJW6Dmak27qsP07ZkdWVo7N9HrL3--nb5DGcvTw8Te5moYml6EIqwGaFACPyWKcSTQqF1FrkaHPKqbA2sjyySNpIDSZGNBHmZCwIbgrk8ZBd7-au2mbdk-vUsnSGqkrX1PROIfgbMUv_J2UmIMMkizx59ScZJwmkqZ88ZJe_wEXTt7W_V0m_MfFvlB6CHWTaxrmWrFq15VK3G8VBbe1R3h61tUft7fEtF7uWkoh-8CTDTGIUfwMc7IrI</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Hwang, Kyuho</creator><creator>Choi, Sooyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090401</creationdate><title>Blind Equalization Method Based on Sparse Bayesian Learning</title><author>Hwang, Kyuho ; Choi, Sooyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ed0f7d50c5b3a689c60d8aa5b9fbebedff2f12f9eac8a0c399c29becf051cd913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AWGN</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Bit error rate</topic><topic>Blind equalization</topic><topic>Blind equalizers</topic><topic>Blinds</topic><topic>Channels</topic><topic>constant modulus algorithm</topic><topic>Cost function</topic><topic>Data communication</topic><topic>Equalization</topic><topic>Equalizers</topic><topic>Intersymbol interference</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>relevance vector machine</topic><topic>Signal processing algorithms</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Kyuho</creatorcontrib><creatorcontrib>Choi, Sooyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hwang, Kyuho</au><au>Choi, Sooyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Equalization Method Based on Sparse Bayesian Learning</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>16</volume><issue>4</issue><spage>315</spage><epage>318</epage><pages>315-318</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>A novel adaptive blind equalization method based on sparse Bayesian learning (blind relevance vector machine (RVM) equalizer) is proposed. This letter incorporates a Godard or constant modulus algorithm (CMA)-like error function into a general Bayesian framework. This Bayesian framework can obtain sparse solutions to regression tasks utilizing models linear in the parameters. By exploiting a probabilistic Bayesian learning framework, the sparse Bayesian learning provides the accurate model for the blind equalization, which typically utilizes fewer basis functions than the equalizer based on the popular and state-of-the-art support vector machine (SVM) - blind SVM equalizer. Simulation results show that the proposed blind RVM equalizer provides improved performances in terms of complexity, stability and intersymbol interference (ISI) and bit error rate (BER) in a linear channel and a similar BER performance in a nonlinear channel compared to the blind SVM equalizer.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2009.2014095</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2009-04, Vol.16 (4), p.315-318
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_miscellaneous_903619761
source IEEE Electronic Library (IEL)
subjects AWGN
Bayesian analysis
Bayesian methods
Bit error rate
Blind equalization
Blind equalizers
Blinds
Channels
constant modulus algorithm
Cost function
Data communication
Equalization
Equalizers
Intersymbol interference
Learning
Machine learning
Mathematical models
relevance vector machine
Signal processing algorithms
Support vector machines
title Blind Equalization Method Based on Sparse Bayesian Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Equalization%20Method%20Based%20on%20Sparse%20Bayesian%20Learning&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Hwang,%20Kyuho&rft.date=2009-04-01&rft.volume=16&rft.issue=4&rft.spage=315&rft.epage=318&rft.pages=315-318&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2009.2014095&rft_dat=%3Cproquest_RIE%3E875079472%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861348188&rft_id=info:pmid/&rft_ieee_id=4797892&rfr_iscdi=true