Blind Equalization Method Based on Sparse Bayesian Learning
A novel adaptive blind equalization method based on sparse Bayesian learning (blind relevance vector machine (RVM) equalizer) is proposed. This letter incorporates a Godard or constant modulus algorithm (CMA)-like error function into a general Bayesian framework. This Bayesian framework can obtain s...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2009-04, Vol.16 (4), p.315-318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 4 |
container_start_page | 315 |
container_title | IEEE signal processing letters |
container_volume | 16 |
creator | Hwang, Kyuho Choi, Sooyong |
description | A novel adaptive blind equalization method based on sparse Bayesian learning (blind relevance vector machine (RVM) equalizer) is proposed. This letter incorporates a Godard or constant modulus algorithm (CMA)-like error function into a general Bayesian framework. This Bayesian framework can obtain sparse solutions to regression tasks utilizing models linear in the parameters. By exploiting a probabilistic Bayesian learning framework, the sparse Bayesian learning provides the accurate model for the blind equalization, which typically utilizes fewer basis functions than the equalizer based on the popular and state-of-the-art support vector machine (SVM) - blind SVM equalizer. Simulation results show that the proposed blind RVM equalizer provides improved performances in terms of complexity, stability and intersymbol interference (ISI) and bit error rate (BER) in a linear channel and a similar BER performance in a nonlinear channel compared to the blind SVM equalizer. |
doi_str_mv | 10.1109/LSP.2009.2014095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903619761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4797892</ieee_id><sourcerecordid>875079472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ed0f7d50c5b3a689c60d8aa5b9fbebedff2f12f9eac8a0c399c29becf051cd913</originalsourceid><addsrcrecordid>eNqFkU1PwzAMhiMEEmNwR-JScYBTh9M2bSxObBof0hBIg3OUpg506tqtaQ_j15NpEwcOcLH9So9t2S9j5xxGnAPezOavowgAfeAJoDhgAy6EDKM45Ye-hgxCRJDH7MS5BQBILsWA3Y6rsi6C6brXVfmlu7Kpg2fqPpsiGGtHReD1fKVbR15vyJW6Dmak27qsP07ZkdWVo7N9HrL3--nb5DGcvTw8Te5moYml6EIqwGaFACPyWKcSTQqF1FrkaHPKqbA2sjyySNpIDSZGNBHmZCwIbgrk8ZBd7-au2mbdk-vUsnSGqkrX1PROIfgbMUv_J2UmIMMkizx59ScZJwmkqZ88ZJe_wEXTt7W_V0m_MfFvlB6CHWTaxrmWrFq15VK3G8VBbe1R3h61tUft7fEtF7uWkoh-8CTDTGIUfwMc7IrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861348188</pqid></control><display><type>article</type><title>Blind Equalization Method Based on Sparse Bayesian Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Hwang, Kyuho ; Choi, Sooyong</creator><creatorcontrib>Hwang, Kyuho ; Choi, Sooyong</creatorcontrib><description>A novel adaptive blind equalization method based on sparse Bayesian learning (blind relevance vector machine (RVM) equalizer) is proposed. This letter incorporates a Godard or constant modulus algorithm (CMA)-like error function into a general Bayesian framework. This Bayesian framework can obtain sparse solutions to regression tasks utilizing models linear in the parameters. By exploiting a probabilistic Bayesian learning framework, the sparse Bayesian learning provides the accurate model for the blind equalization, which typically utilizes fewer basis functions than the equalizer based on the popular and state-of-the-art support vector machine (SVM) - blind SVM equalizer. Simulation results show that the proposed blind RVM equalizer provides improved performances in terms of complexity, stability and intersymbol interference (ISI) and bit error rate (BER) in a linear channel and a similar BER performance in a nonlinear channel compared to the blind SVM equalizer.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2009.2014095</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AWGN ; Bayesian analysis ; Bayesian methods ; Bit error rate ; Blind equalization ; Blind equalizers ; Blinds ; Channels ; constant modulus algorithm ; Cost function ; Data communication ; Equalization ; Equalizers ; Intersymbol interference ; Learning ; Machine learning ; Mathematical models ; relevance vector machine ; Signal processing algorithms ; Support vector machines</subject><ispartof>IEEE signal processing letters, 2009-04, Vol.16 (4), p.315-318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ed0f7d50c5b3a689c60d8aa5b9fbebedff2f12f9eac8a0c399c29becf051cd913</citedby><cites>FETCH-LOGICAL-c385t-ed0f7d50c5b3a689c60d8aa5b9fbebedff2f12f9eac8a0c399c29becf051cd913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4797892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4797892$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hwang, Kyuho</creatorcontrib><creatorcontrib>Choi, Sooyong</creatorcontrib><title>Blind Equalization Method Based on Sparse Bayesian Learning</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>A novel adaptive blind equalization method based on sparse Bayesian learning (blind relevance vector machine (RVM) equalizer) is proposed. This letter incorporates a Godard or constant modulus algorithm (CMA)-like error function into a general Bayesian framework. This Bayesian framework can obtain sparse solutions to regression tasks utilizing models linear in the parameters. By exploiting a probabilistic Bayesian learning framework, the sparse Bayesian learning provides the accurate model for the blind equalization, which typically utilizes fewer basis functions than the equalizer based on the popular and state-of-the-art support vector machine (SVM) - blind SVM equalizer. Simulation results show that the proposed blind RVM equalizer provides improved performances in terms of complexity, stability and intersymbol interference (ISI) and bit error rate (BER) in a linear channel and a similar BER performance in a nonlinear channel compared to the blind SVM equalizer.</description><subject>AWGN</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Bit error rate</subject><subject>Blind equalization</subject><subject>Blind equalizers</subject><subject>Blinds</subject><subject>Channels</subject><subject>constant modulus algorithm</subject><subject>Cost function</subject><subject>Data communication</subject><subject>Equalization</subject><subject>Equalizers</subject><subject>Intersymbol interference</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>relevance vector machine</subject><subject>Signal processing algorithms</subject><subject>Support vector machines</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1PwzAMhiMEEmNwR-JScYBTh9M2bSxObBof0hBIg3OUpg506tqtaQ_j15NpEwcOcLH9So9t2S9j5xxGnAPezOavowgAfeAJoDhgAy6EDKM45Ye-hgxCRJDH7MS5BQBILsWA3Y6rsi6C6brXVfmlu7Kpg2fqPpsiGGtHReD1fKVbR15vyJW6Dmak27qsP07ZkdWVo7N9HrL3--nb5DGcvTw8Te5moYml6EIqwGaFACPyWKcSTQqF1FrkaHPKqbA2sjyySNpIDSZGNBHmZCwIbgrk8ZBd7-au2mbdk-vUsnSGqkrX1PROIfgbMUv_J2UmIMMkizx59ScZJwmkqZ88ZJe_wEXTt7W_V0m_MfFvlB6CHWTaxrmWrFq15VK3G8VBbe1R3h61tUft7fEtF7uWkoh-8CTDTGIUfwMc7IrI</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Hwang, Kyuho</creator><creator>Choi, Sooyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090401</creationdate><title>Blind Equalization Method Based on Sparse Bayesian Learning</title><author>Hwang, Kyuho ; Choi, Sooyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ed0f7d50c5b3a689c60d8aa5b9fbebedff2f12f9eac8a0c399c29becf051cd913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AWGN</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Bit error rate</topic><topic>Blind equalization</topic><topic>Blind equalizers</topic><topic>Blinds</topic><topic>Channels</topic><topic>constant modulus algorithm</topic><topic>Cost function</topic><topic>Data communication</topic><topic>Equalization</topic><topic>Equalizers</topic><topic>Intersymbol interference</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>relevance vector machine</topic><topic>Signal processing algorithms</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Kyuho</creatorcontrib><creatorcontrib>Choi, Sooyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hwang, Kyuho</au><au>Choi, Sooyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Equalization Method Based on Sparse Bayesian Learning</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>16</volume><issue>4</issue><spage>315</spage><epage>318</epage><pages>315-318</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>A novel adaptive blind equalization method based on sparse Bayesian learning (blind relevance vector machine (RVM) equalizer) is proposed. This letter incorporates a Godard or constant modulus algorithm (CMA)-like error function into a general Bayesian framework. This Bayesian framework can obtain sparse solutions to regression tasks utilizing models linear in the parameters. By exploiting a probabilistic Bayesian learning framework, the sparse Bayesian learning provides the accurate model for the blind equalization, which typically utilizes fewer basis functions than the equalizer based on the popular and state-of-the-art support vector machine (SVM) - blind SVM equalizer. Simulation results show that the proposed blind RVM equalizer provides improved performances in terms of complexity, stability and intersymbol interference (ISI) and bit error rate (BER) in a linear channel and a similar BER performance in a nonlinear channel compared to the blind SVM equalizer.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2009.2014095</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2009-04, Vol.16 (4), p.315-318 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_miscellaneous_903619761 |
source | IEEE Electronic Library (IEL) |
subjects | AWGN Bayesian analysis Bayesian methods Bit error rate Blind equalization Blind equalizers Blinds Channels constant modulus algorithm Cost function Data communication Equalization Equalizers Intersymbol interference Learning Machine learning Mathematical models relevance vector machine Signal processing algorithms Support vector machines |
title | Blind Equalization Method Based on Sparse Bayesian Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Equalization%20Method%20Based%20on%20Sparse%20Bayesian%20Learning&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Hwang,%20Kyuho&rft.date=2009-04-01&rft.volume=16&rft.issue=4&rft.spage=315&rft.epage=318&rft.pages=315-318&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2009.2014095&rft_dat=%3Cproquest_RIE%3E875079472%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861348188&rft_id=info:pmid/&rft_ieee_id=4797892&rfr_iscdi=true |