Low-Weight Polynomial Form Integers for Efficient Modular Multiplication

In 1999, Solinas introduced families of moduli called the generalized Mersenne numbers (GMNs), which are expressed in low-weight polynomial form, p=f(t), where t is limited to a power of 2. GMNs are very useful in elliptic curve cryptosystems over prime fields since modular reduction by a GMN requir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 2007-01, Vol.56 (1), p.44-57
Hauptverfasser: Chung, Jaewook, Hasan, M. Anwar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 44
container_title IEEE transactions on computers
container_volume 56
creator Chung, Jaewook
Hasan, M. Anwar
description In 1999, Solinas introduced families of moduli called the generalized Mersenne numbers (GMNs), which are expressed in low-weight polynomial form, p=f(t), where t is limited to a power of 2. GMNs are very useful in elliptic curve cryptosystems over prime fields since modular reduction by a GMN requires only integer additions and subtractions. However, since there are not many GMNs and each GMN requires a dedicated implementation, GMNs are hardly useful for other cryptosystems. Here, we modify GMN by removing restriction on the choice of t and restricting the coefficients of f(t) to 0 and plusmn1. We call such families of moduli low-weight polynomial form integers (LWPFIs). We show an efficient modular multiplication method using LWPFI moduli. LWPFIs allow general implementation and there exist many LWPFI moduli. One may consider LWPFIs as a trade-off between general integers and GMNs
doi_str_mv 10.1109/TC.2007.250622
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_903619265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4016496</ieee_id><sourcerecordid>914662326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-281cdd2fcd882bf047ba9c1f83dc288347270563ab36adae8a2c0eefd6f14ae23</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgUQprCwsEQNMKdePOPaIKgqVimAoYrRcxwZXaVzsRKj_nlRBDAww3eU7R7o6CJ1jmGAM8mY5nRCAckIK4IQcoBEuijKXsuCHaASARS4pg2N0ktIaoDcgR-hhET7zV-vf3tvsOdS7Jmy8rrNZiJts3rT2zcaUuRCzO-e88bZps8dQdbWO2WNXt35be6NbH5pTdOR0nezZ9x2jl9ndcvqQL57u59PbRW6owG1OBDZVRZyphCArB6xcaWmwE7QyRAjKSlJCwaleUa4rbYUmBqx1FXeYaUvoGF0PvdsYPjqbWrXxydi61o0NXVISM84JJfx_CZRjSXjRy6s_JWWMSiz28PIXXIcuNv2_SnAqGOaC9mgyIBNDStE6tY1-o-NOYVD7pdRyqvZLqWGpPnAxBLy19gczwJxJTr8AITGOEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863841683</pqid></control><display><type>article</type><title>Low-Weight Polynomial Form Integers for Efficient Modular Multiplication</title><source>IEEE Electronic Library (IEL)</source><creator>Chung, Jaewook ; Hasan, M. Anwar</creator><creatorcontrib>Chung, Jaewook ; Hasan, M. Anwar</creatorcontrib><description>In 1999, Solinas introduced families of moduli called the generalized Mersenne numbers (GMNs), which are expressed in low-weight polynomial form, p=f(t), where t is limited to a power of 2. GMNs are very useful in elliptic curve cryptosystems over prime fields since modular reduction by a GMN requires only integer additions and subtractions. However, since there are not many GMNs and each GMN requires a dedicated implementation, GMNs are hardly useful for other cryptosystems. Here, we modify GMN by removing restriction on the choice of t and restricting the coefficients of f(t) to 0 and plusmn1. We call such families of moduli low-weight polynomial form integers (LWPFIs). We show an efficient modular multiplication method using LWPFI moduli. LWPFIs allow general implementation and there exist many LWPFI moduli. One may consider LWPFIs as a trade-off between general integers and GMNs</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2007.250622</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation algorithms ; Classification algorithms ; Constrictions ; Cryptography ; Elliptic curve cryptography ; elliptic curve cryptosystems ; Integers ; Mersenne numbers ; Modular ; modular multiplication ; Multiplication ; NIST ; Reduction ; RSA ; Software ; Software algorithms ; Subtraction ; the Barrett reduction ; the Montgomery reduction ; Tradeoffs</subject><ispartof>IEEE transactions on computers, 2007-01, Vol.56 (1), p.44-57</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-281cdd2fcd882bf047ba9c1f83dc288347270563ab36adae8a2c0eefd6f14ae23</citedby><cites>FETCH-LOGICAL-c381t-281cdd2fcd882bf047ba9c1f83dc288347270563ab36adae8a2c0eefd6f14ae23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4016496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4016496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chung, Jaewook</creatorcontrib><creatorcontrib>Hasan, M. Anwar</creatorcontrib><title>Low-Weight Polynomial Form Integers for Efficient Modular Multiplication</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>In 1999, Solinas introduced families of moduli called the generalized Mersenne numbers (GMNs), which are expressed in low-weight polynomial form, p=f(t), where t is limited to a power of 2. GMNs are very useful in elliptic curve cryptosystems over prime fields since modular reduction by a GMN requires only integer additions and subtractions. However, since there are not many GMNs and each GMN requires a dedicated implementation, GMNs are hardly useful for other cryptosystems. Here, we modify GMN by removing restriction on the choice of t and restricting the coefficients of f(t) to 0 and plusmn1. We call such families of moduli low-weight polynomial form integers (LWPFIs). We show an efficient modular multiplication method using LWPFI moduli. LWPFIs allow general implementation and there exist many LWPFI moduli. One may consider LWPFIs as a trade-off between general integers and GMNs</description><subject>Approximation algorithms</subject><subject>Classification algorithms</subject><subject>Constrictions</subject><subject>Cryptography</subject><subject>Elliptic curve cryptography</subject><subject>elliptic curve cryptosystems</subject><subject>Integers</subject><subject>Mersenne numbers</subject><subject>Modular</subject><subject>modular multiplication</subject><subject>Multiplication</subject><subject>NIST</subject><subject>Reduction</subject><subject>RSA</subject><subject>Software</subject><subject>Software algorithms</subject><subject>Subtraction</subject><subject>the Barrett reduction</subject><subject>the Montgomery reduction</subject><subject>Tradeoffs</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0TtPwzAUBWALgUQprCwsEQNMKdePOPaIKgqVimAoYrRcxwZXaVzsRKj_nlRBDAww3eU7R7o6CJ1jmGAM8mY5nRCAckIK4IQcoBEuijKXsuCHaASARS4pg2N0ktIaoDcgR-hhET7zV-vf3tvsOdS7Jmy8rrNZiJts3rT2zcaUuRCzO-e88bZps8dQdbWO2WNXt35be6NbH5pTdOR0nezZ9x2jl9ndcvqQL57u59PbRW6owG1OBDZVRZyphCArB6xcaWmwE7QyRAjKSlJCwaleUa4rbYUmBqx1FXeYaUvoGF0PvdsYPjqbWrXxydi61o0NXVISM84JJfx_CZRjSXjRy6s_JWWMSiz28PIXXIcuNv2_SnAqGOaC9mgyIBNDStE6tY1-o-NOYVD7pdRyqvZLqWGpPnAxBLy19gczwJxJTr8AITGOEA</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Chung, Jaewook</creator><creator>Hasan, M. Anwar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200701</creationdate><title>Low-Weight Polynomial Form Integers for Efficient Modular Multiplication</title><author>Chung, Jaewook ; Hasan, M. Anwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-281cdd2fcd882bf047ba9c1f83dc288347270563ab36adae8a2c0eefd6f14ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Approximation algorithms</topic><topic>Classification algorithms</topic><topic>Constrictions</topic><topic>Cryptography</topic><topic>Elliptic curve cryptography</topic><topic>elliptic curve cryptosystems</topic><topic>Integers</topic><topic>Mersenne numbers</topic><topic>Modular</topic><topic>modular multiplication</topic><topic>Multiplication</topic><topic>NIST</topic><topic>Reduction</topic><topic>RSA</topic><topic>Software</topic><topic>Software algorithms</topic><topic>Subtraction</topic><topic>the Barrett reduction</topic><topic>the Montgomery reduction</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Jaewook</creatorcontrib><creatorcontrib>Hasan, M. Anwar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chung, Jaewook</au><au>Hasan, M. Anwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Weight Polynomial Form Integers for Efficient Modular Multiplication</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2007-01</date><risdate>2007</risdate><volume>56</volume><issue>1</issue><spage>44</spage><epage>57</epage><pages>44-57</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>In 1999, Solinas introduced families of moduli called the generalized Mersenne numbers (GMNs), which are expressed in low-weight polynomial form, p=f(t), where t is limited to a power of 2. GMNs are very useful in elliptic curve cryptosystems over prime fields since modular reduction by a GMN requires only integer additions and subtractions. However, since there are not many GMNs and each GMN requires a dedicated implementation, GMNs are hardly useful for other cryptosystems. Here, we modify GMN by removing restriction on the choice of t and restricting the coefficients of f(t) to 0 and plusmn1. We call such families of moduli low-weight polynomial form integers (LWPFIs). We show an efficient modular multiplication method using LWPFI moduli. LWPFIs allow general implementation and there exist many LWPFI moduli. One may consider LWPFIs as a trade-off between general integers and GMNs</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2007.250622</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2007-01, Vol.56 (1), p.44-57
issn 0018-9340
1557-9956
language eng
recordid cdi_proquest_miscellaneous_903619265
source IEEE Electronic Library (IEL)
subjects Approximation algorithms
Classification algorithms
Constrictions
Cryptography
Elliptic curve cryptography
elliptic curve cryptosystems
Integers
Mersenne numbers
Modular
modular multiplication
Multiplication
NIST
Reduction
RSA
Software
Software algorithms
Subtraction
the Barrett reduction
the Montgomery reduction
Tradeoffs
title Low-Weight Polynomial Form Integers for Efficient Modular Multiplication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Weight%20Polynomial%20Form%20Integers%20for%20Efficient%20Modular%20Multiplication&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Chung,%20Jaewook&rft.date=2007-01&rft.volume=56&rft.issue=1&rft.spage=44&rft.epage=57&rft.pages=44-57&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2007.250622&rft_dat=%3Cproquest_RIE%3E914662326%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863841683&rft_id=info:pmid/&rft_ieee_id=4016496&rfr_iscdi=true