A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling
A reverse phase high performance liquid chromatography (HPLC) separation was established for profiling water soluble compounds in extracts from tea. Whole chromatograms were pre-processed by techniques including baseline correction, binning and normalisation. In addition, peak alignment by correctio...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2009-05, Vol.642 (1), p.257-265 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 1 |
container_start_page | 257 |
container_title | Analytica chimica acta |
container_volume | 642 |
creator | Zheng, L. Watson, D.G. Johnston, B.F. Clark, R.L. Edrada-Ebel, R. Elseheri, W. |
description | A reverse phase high performance liquid chromatography (HPLC) separation was established for profiling water soluble compounds in extracts from tea. Whole chromatograms were pre-processed by techniques including baseline correction, binning and normalisation. In addition, peak alignment by correction of retention time shifts was performed using correlation optimization warping (COW) producing a correlation score of 0.96. To extract the chemically relevant information from the data, a variety of chemometric approaches were employed. Principle component analysis (PCA) was used to group the tea samples according to their chromatographic differences. Three principal components (PCs) described 78% of the total variance after peak alignment (64% before) and analysis of the score and loading plots provided insight into the main chemical differences between the samples. Finally, PCA, support vector machines (SVMs) and random forest (RF) machine learning methods were evaluated comparatively on their ability to predict unknown tea samples using models constructed from a predetermined training set. The best predictions of identity were obtained by using RF. |
doi_str_mv | 10.1016/j.aca.2008.12.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903615078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000326700802103X</els_id><sourcerecordid>34414477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-641ee3920623d4b8c3d247ed939890d4a2af186c62dece8a6e48962e015f67003</originalsourceid><addsrcrecordid>eNqFksuO0zAUhiMEYsrAA7BB3sBsSPCtdiJWVTVcpJFgAWvLtU-mruI42M5AeSPeElepYDezsXV-fefoXP6qeklwQzAR7w6NNrqhGLcNoQ0m60fVirSS1ZxR_rhaYYxZTYXEF9WzlA4lpATzp9UF6TiVvOWr6s8GmT344CFHZ1DKsz2i0BcxBq9zuI3ap5OQQSP4laM2OaHdEZkQIww6uzCiMGXn3e8l-Knj5MZb5MbCjId5NIvs8h593W7eojRPU4gZ3YHJISKvzd6NkJAeLYrlCR71IULKyOqskQ8WhlLwefWk10OCF-f_svr-4frb9lN98-Xj5-3mpjZcrnMtOAFgHcWCMst3rWGWcgm2Y13bYcs11T1phRHUgoFWC-BtJyiU7fVlU5hdVldL3SmGH3NpQ3mXDAyDHiHMSXWYCbLGsi3km3tJISnuGJMPgoxzwrl8GCxTcdxSUUCygCaGlCL0aorO63hUBKuTN9RBFW-okzcUoapMV3JenYvPOw_2f8bZDAV4fQZ0MnroyzGMS_84SiTu8Po09_uFg3KGOwdRJeNgNGBdLDdVNrh72vgLuhPZFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20640826</pqid></control><display><type>article</type><title>A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zheng, L. ; Watson, D.G. ; Johnston, B.F. ; Clark, R.L. ; Edrada-Ebel, R. ; Elseheri, W.</creator><creatorcontrib>Zheng, L. ; Watson, D.G. ; Johnston, B.F. ; Clark, R.L. ; Edrada-Ebel, R. ; Elseheri, W.</creatorcontrib><description>A reverse phase high performance liquid chromatography (HPLC) separation was established for profiling water soluble compounds in extracts from tea. Whole chromatograms were pre-processed by techniques including baseline correction, binning and normalisation. In addition, peak alignment by correction of retention time shifts was performed using correlation optimization warping (COW) producing a correlation score of 0.96. To extract the chemically relevant information from the data, a variety of chemometric approaches were employed. Principle component analysis (PCA) was used to group the tea samples according to their chromatographic differences. Three principal components (PCs) described 78% of the total variance after peak alignment (64% before) and analysis of the score and loading plots provided insight into the main chemical differences between the samples. Finally, PCA, support vector machines (SVMs) and random forest (RF) machine learning methods were evaluated comparatively on their ability to predict unknown tea samples using models constructed from a predetermined training set. The best predictions of identity were obtained by using RF.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2008.12.015</identifier><identifier>PMID: 19427484</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Analytical chemistry ; Artificial Intelligence ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography, High Pressure Liquid - methods ; Correlation optimization warping ; Exact sciences and technology ; Mass Spectrometry ; Other chromatographic methods ; Pattern Recognition, Automated ; Prediction ; Principal Component Analysis ; Principle component analysis ; Random forest ; Support vector machines ; Tea ; Tea - chemistry ; Time Factors ; Warping</subject><ispartof>Analytica chimica acta, 2009-05, Vol.642 (1), p.257-265</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-641ee3920623d4b8c3d247ed939890d4a2af186c62dece8a6e48962e015f67003</citedby><cites>FETCH-LOGICAL-c475t-641ee3920623d4b8c3d247ed939890d4a2af186c62dece8a6e48962e015f67003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2008.12.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21709058$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19427484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, L.</creatorcontrib><creatorcontrib>Watson, D.G.</creatorcontrib><creatorcontrib>Johnston, B.F.</creatorcontrib><creatorcontrib>Clark, R.L.</creatorcontrib><creatorcontrib>Edrada-Ebel, R.</creatorcontrib><creatorcontrib>Elseheri, W.</creatorcontrib><title>A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>A reverse phase high performance liquid chromatography (HPLC) separation was established for profiling water soluble compounds in extracts from tea. Whole chromatograms were pre-processed by techniques including baseline correction, binning and normalisation. In addition, peak alignment by correction of retention time shifts was performed using correlation optimization warping (COW) producing a correlation score of 0.96. To extract the chemically relevant information from the data, a variety of chemometric approaches were employed. Principle component analysis (PCA) was used to group the tea samples according to their chromatographic differences. Three principal components (PCs) described 78% of the total variance after peak alignment (64% before) and analysis of the score and loading plots provided insight into the main chemical differences between the samples. Finally, PCA, support vector machines (SVMs) and random forest (RF) machine learning methods were evaluated comparatively on their ability to predict unknown tea samples using models constructed from a predetermined training set. The best predictions of identity were obtained by using RF.</description><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Artificial Intelligence</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Correlation optimization warping</subject><subject>Exact sciences and technology</subject><subject>Mass Spectrometry</subject><subject>Other chromatographic methods</subject><subject>Pattern Recognition, Automated</subject><subject>Prediction</subject><subject>Principal Component Analysis</subject><subject>Principle component analysis</subject><subject>Random forest</subject><subject>Support vector machines</subject><subject>Tea</subject><subject>Tea - chemistry</subject><subject>Time Factors</subject><subject>Warping</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksuO0zAUhiMEYsrAA7BB3sBsSPCtdiJWVTVcpJFgAWvLtU-mruI42M5AeSPeElepYDezsXV-fefoXP6qeklwQzAR7w6NNrqhGLcNoQ0m60fVirSS1ZxR_rhaYYxZTYXEF9WzlA4lpATzp9UF6TiVvOWr6s8GmT344CFHZ1DKsz2i0BcxBq9zuI3ap5OQQSP4laM2OaHdEZkQIww6uzCiMGXn3e8l-Knj5MZb5MbCjId5NIvs8h593W7eojRPU4gZ3YHJISKvzd6NkJAeLYrlCR71IULKyOqskQ8WhlLwefWk10OCF-f_svr-4frb9lN98-Xj5-3mpjZcrnMtOAFgHcWCMst3rWGWcgm2Y13bYcs11T1phRHUgoFWC-BtJyiU7fVlU5hdVldL3SmGH3NpQ3mXDAyDHiHMSXWYCbLGsi3km3tJISnuGJMPgoxzwrl8GCxTcdxSUUCygCaGlCL0aorO63hUBKuTN9RBFW-okzcUoapMV3JenYvPOw_2f8bZDAV4fQZ0MnroyzGMS_84SiTu8Po09_uFg3KGOwdRJeNgNGBdLDdVNrh72vgLuhPZFA</recordid><startdate>20090529</startdate><enddate>20090529</enddate><creator>Zheng, L.</creator><creator>Watson, D.G.</creator><creator>Johnston, B.F.</creator><creator>Clark, R.L.</creator><creator>Edrada-Ebel, R.</creator><creator>Elseheri, W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090529</creationdate><title>A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling</title><author>Zheng, L. ; Watson, D.G. ; Johnston, B.F. ; Clark, R.L. ; Edrada-Ebel, R. ; Elseheri, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-641ee3920623d4b8c3d247ed939890d4a2af186c62dece8a6e48962e015f67003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Artificial Intelligence</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Correlation optimization warping</topic><topic>Exact sciences and technology</topic><topic>Mass Spectrometry</topic><topic>Other chromatographic methods</topic><topic>Pattern Recognition, Automated</topic><topic>Prediction</topic><topic>Principal Component Analysis</topic><topic>Principle component analysis</topic><topic>Random forest</topic><topic>Support vector machines</topic><topic>Tea</topic><topic>Tea - chemistry</topic><topic>Time Factors</topic><topic>Warping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, L.</creatorcontrib><creatorcontrib>Watson, D.G.</creatorcontrib><creatorcontrib>Johnston, B.F.</creatorcontrib><creatorcontrib>Clark, R.L.</creatorcontrib><creatorcontrib>Edrada-Ebel, R.</creatorcontrib><creatorcontrib>Elseheri, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, L.</au><au>Watson, D.G.</au><au>Johnston, B.F.</au><au>Clark, R.L.</au><au>Edrada-Ebel, R.</au><au>Elseheri, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2009-05-29</date><risdate>2009</risdate><volume>642</volume><issue>1</issue><spage>257</spage><epage>265</epage><pages>257-265</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>A reverse phase high performance liquid chromatography (HPLC) separation was established for profiling water soluble compounds in extracts from tea. Whole chromatograms were pre-processed by techniques including baseline correction, binning and normalisation. In addition, peak alignment by correction of retention time shifts was performed using correlation optimization warping (COW) producing a correlation score of 0.96. To extract the chemically relevant information from the data, a variety of chemometric approaches were employed. Principle component analysis (PCA) was used to group the tea samples according to their chromatographic differences. Three principal components (PCs) described 78% of the total variance after peak alignment (64% before) and analysis of the score and loading plots provided insight into the main chemical differences between the samples. Finally, PCA, support vector machines (SVMs) and random forest (RF) machine learning methods were evaluated comparatively on their ability to predict unknown tea samples using models constructed from a predetermined training set. The best predictions of identity were obtained by using RF.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>19427484</pmid><doi>10.1016/j.aca.2008.12.015</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2670 |
ispartof | Analytica chimica acta, 2009-05, Vol.642 (1), p.257-265 |
issn | 0003-2670 1873-4324 |
language | eng |
recordid | cdi_proquest_miscellaneous_903615078 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Analytical chemistry Artificial Intelligence Chemistry Chromatographic methods and physical methods associated with chromatography Chromatography, High Pressure Liquid - methods Correlation optimization warping Exact sciences and technology Mass Spectrometry Other chromatographic methods Pattern Recognition, Automated Prediction Principal Component Analysis Principle component analysis Random forest Support vector machines Tea Tea - chemistry Time Factors Warping |
title | A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20chemometric%20study%20of%20chromatograms%20of%20tea%20extracts%20by%20correlation%20optimization%20warping%20in%20conjunction%20with%20PCA,%20support%20vector%20machines%20and%20random%20forest%20data%20modeling&rft.jtitle=Analytica%20chimica%20acta&rft.au=Zheng,%20L.&rft.date=2009-05-29&rft.volume=642&rft.issue=1&rft.spage=257&rft.epage=265&rft.pages=257-265&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/j.aca.2008.12.015&rft_dat=%3Cproquest_cross%3E34414477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20640826&rft_id=info:pmid/19427484&rft_els_id=S000326700802103X&rfr_iscdi=true |