A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling

A reverse phase high performance liquid chromatography (HPLC) separation was established for profiling water soluble compounds in extracts from tea. Whole chromatograms were pre-processed by techniques including baseline correction, binning and normalisation. In addition, peak alignment by correctio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2009-05, Vol.642 (1), p.257-265
Hauptverfasser: Zheng, L., Watson, D.G., Johnston, B.F., Clark, R.L., Edrada-Ebel, R., Elseheri, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 1
container_start_page 257
container_title Analytica chimica acta
container_volume 642
creator Zheng, L.
Watson, D.G.
Johnston, B.F.
Clark, R.L.
Edrada-Ebel, R.
Elseheri, W.
description A reverse phase high performance liquid chromatography (HPLC) separation was established for profiling water soluble compounds in extracts from tea. Whole chromatograms were pre-processed by techniques including baseline correction, binning and normalisation. In addition, peak alignment by correction of retention time shifts was performed using correlation optimization warping (COW) producing a correlation score of 0.96. To extract the chemically relevant information from the data, a variety of chemometric approaches were employed. Principle component analysis (PCA) was used to group the tea samples according to their chromatographic differences. Three principal components (PCs) described 78% of the total variance after peak alignment (64% before) and analysis of the score and loading plots provided insight into the main chemical differences between the samples. Finally, PCA, support vector machines (SVMs) and random forest (RF) machine learning methods were evaluated comparatively on their ability to predict unknown tea samples using models constructed from a predetermined training set. The best predictions of identity were obtained by using RF.
doi_str_mv 10.1016/j.aca.2008.12.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903615078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000326700802103X</els_id><sourcerecordid>34414477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-641ee3920623d4b8c3d247ed939890d4a2af186c62dece8a6e48962e015f67003</originalsourceid><addsrcrecordid>eNqFksuO0zAUhiMEYsrAA7BB3sBsSPCtdiJWVTVcpJFgAWvLtU-mruI42M5AeSPeElepYDezsXV-fefoXP6qeklwQzAR7w6NNrqhGLcNoQ0m60fVirSS1ZxR_rhaYYxZTYXEF9WzlA4lpATzp9UF6TiVvOWr6s8GmT344CFHZ1DKsz2i0BcxBq9zuI3ap5OQQSP4laM2OaHdEZkQIww6uzCiMGXn3e8l-Knj5MZb5MbCjId5NIvs8h593W7eojRPU4gZ3YHJISKvzd6NkJAeLYrlCR71IULKyOqskQ8WhlLwefWk10OCF-f_svr-4frb9lN98-Xj5-3mpjZcrnMtOAFgHcWCMst3rWGWcgm2Y13bYcs11T1phRHUgoFWC-BtJyiU7fVlU5hdVldL3SmGH3NpQ3mXDAyDHiHMSXWYCbLGsi3km3tJISnuGJMPgoxzwrl8GCxTcdxSUUCygCaGlCL0aorO63hUBKuTN9RBFW-okzcUoapMV3JenYvPOw_2f8bZDAV4fQZ0MnroyzGMS_84SiTu8Po09_uFg3KGOwdRJeNgNGBdLDdVNrh72vgLuhPZFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20640826</pqid></control><display><type>article</type><title>A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zheng, L. ; Watson, D.G. ; Johnston, B.F. ; Clark, R.L. ; Edrada-Ebel, R. ; Elseheri, W.</creator><creatorcontrib>Zheng, L. ; Watson, D.G. ; Johnston, B.F. ; Clark, R.L. ; Edrada-Ebel, R. ; Elseheri, W.</creatorcontrib><description>A reverse phase high performance liquid chromatography (HPLC) separation was established for profiling water soluble compounds in extracts from tea. Whole chromatograms were pre-processed by techniques including baseline correction, binning and normalisation. In addition, peak alignment by correction of retention time shifts was performed using correlation optimization warping (COW) producing a correlation score of 0.96. To extract the chemically relevant information from the data, a variety of chemometric approaches were employed. Principle component analysis (PCA) was used to group the tea samples according to their chromatographic differences. Three principal components (PCs) described 78% of the total variance after peak alignment (64% before) and analysis of the score and loading plots provided insight into the main chemical differences between the samples. Finally, PCA, support vector machines (SVMs) and random forest (RF) machine learning methods were evaluated comparatively on their ability to predict unknown tea samples using models constructed from a predetermined training set. The best predictions of identity were obtained by using RF.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2008.12.015</identifier><identifier>PMID: 19427484</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Analytical chemistry ; Artificial Intelligence ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography, High Pressure Liquid - methods ; Correlation optimization warping ; Exact sciences and technology ; Mass Spectrometry ; Other chromatographic methods ; Pattern Recognition, Automated ; Prediction ; Principal Component Analysis ; Principle component analysis ; Random forest ; Support vector machines ; Tea ; Tea - chemistry ; Time Factors ; Warping</subject><ispartof>Analytica chimica acta, 2009-05, Vol.642 (1), p.257-265</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-641ee3920623d4b8c3d247ed939890d4a2af186c62dece8a6e48962e015f67003</citedby><cites>FETCH-LOGICAL-c475t-641ee3920623d4b8c3d247ed939890d4a2af186c62dece8a6e48962e015f67003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2008.12.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21709058$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19427484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, L.</creatorcontrib><creatorcontrib>Watson, D.G.</creatorcontrib><creatorcontrib>Johnston, B.F.</creatorcontrib><creatorcontrib>Clark, R.L.</creatorcontrib><creatorcontrib>Edrada-Ebel, R.</creatorcontrib><creatorcontrib>Elseheri, W.</creatorcontrib><title>A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>A reverse phase high performance liquid chromatography (HPLC) separation was established for profiling water soluble compounds in extracts from tea. Whole chromatograms were pre-processed by techniques including baseline correction, binning and normalisation. In addition, peak alignment by correction of retention time shifts was performed using correlation optimization warping (COW) producing a correlation score of 0.96. To extract the chemically relevant information from the data, a variety of chemometric approaches were employed. Principle component analysis (PCA) was used to group the tea samples according to their chromatographic differences. Three principal components (PCs) described 78% of the total variance after peak alignment (64% before) and analysis of the score and loading plots provided insight into the main chemical differences between the samples. Finally, PCA, support vector machines (SVMs) and random forest (RF) machine learning methods were evaluated comparatively on their ability to predict unknown tea samples using models constructed from a predetermined training set. The best predictions of identity were obtained by using RF.</description><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Artificial Intelligence</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Correlation optimization warping</subject><subject>Exact sciences and technology</subject><subject>Mass Spectrometry</subject><subject>Other chromatographic methods</subject><subject>Pattern Recognition, Automated</subject><subject>Prediction</subject><subject>Principal Component Analysis</subject><subject>Principle component analysis</subject><subject>Random forest</subject><subject>Support vector machines</subject><subject>Tea</subject><subject>Tea - chemistry</subject><subject>Time Factors</subject><subject>Warping</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksuO0zAUhiMEYsrAA7BB3sBsSPCtdiJWVTVcpJFgAWvLtU-mruI42M5AeSPeElepYDezsXV-fefoXP6qeklwQzAR7w6NNrqhGLcNoQ0m60fVirSS1ZxR_rhaYYxZTYXEF9WzlA4lpATzp9UF6TiVvOWr6s8GmT344CFHZ1DKsz2i0BcxBq9zuI3ap5OQQSP4laM2OaHdEZkQIww6uzCiMGXn3e8l-Knj5MZb5MbCjId5NIvs8h593W7eojRPU4gZ3YHJISKvzd6NkJAeLYrlCR71IULKyOqskQ8WhlLwefWk10OCF-f_svr-4frb9lN98-Xj5-3mpjZcrnMtOAFgHcWCMst3rWGWcgm2Y13bYcs11T1phRHUgoFWC-BtJyiU7fVlU5hdVldL3SmGH3NpQ3mXDAyDHiHMSXWYCbLGsi3km3tJISnuGJMPgoxzwrl8GCxTcdxSUUCygCaGlCL0aorO63hUBKuTN9RBFW-okzcUoapMV3JenYvPOw_2f8bZDAV4fQZ0MnroyzGMS_84SiTu8Po09_uFg3KGOwdRJeNgNGBdLDdVNrh72vgLuhPZFA</recordid><startdate>20090529</startdate><enddate>20090529</enddate><creator>Zheng, L.</creator><creator>Watson, D.G.</creator><creator>Johnston, B.F.</creator><creator>Clark, R.L.</creator><creator>Edrada-Ebel, R.</creator><creator>Elseheri, W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090529</creationdate><title>A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling</title><author>Zheng, L. ; Watson, D.G. ; Johnston, B.F. ; Clark, R.L. ; Edrada-Ebel, R. ; Elseheri, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-641ee3920623d4b8c3d247ed939890d4a2af186c62dece8a6e48962e015f67003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Artificial Intelligence</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Correlation optimization warping</topic><topic>Exact sciences and technology</topic><topic>Mass Spectrometry</topic><topic>Other chromatographic methods</topic><topic>Pattern Recognition, Automated</topic><topic>Prediction</topic><topic>Principal Component Analysis</topic><topic>Principle component analysis</topic><topic>Random forest</topic><topic>Support vector machines</topic><topic>Tea</topic><topic>Tea - chemistry</topic><topic>Time Factors</topic><topic>Warping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, L.</creatorcontrib><creatorcontrib>Watson, D.G.</creatorcontrib><creatorcontrib>Johnston, B.F.</creatorcontrib><creatorcontrib>Clark, R.L.</creatorcontrib><creatorcontrib>Edrada-Ebel, R.</creatorcontrib><creatorcontrib>Elseheri, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, L.</au><au>Watson, D.G.</au><au>Johnston, B.F.</au><au>Clark, R.L.</au><au>Edrada-Ebel, R.</au><au>Elseheri, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2009-05-29</date><risdate>2009</risdate><volume>642</volume><issue>1</issue><spage>257</spage><epage>265</epage><pages>257-265</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>A reverse phase high performance liquid chromatography (HPLC) separation was established for profiling water soluble compounds in extracts from tea. Whole chromatograms were pre-processed by techniques including baseline correction, binning and normalisation. In addition, peak alignment by correction of retention time shifts was performed using correlation optimization warping (COW) producing a correlation score of 0.96. To extract the chemically relevant information from the data, a variety of chemometric approaches were employed. Principle component analysis (PCA) was used to group the tea samples according to their chromatographic differences. Three principal components (PCs) described 78% of the total variance after peak alignment (64% before) and analysis of the score and loading plots provided insight into the main chemical differences between the samples. Finally, PCA, support vector machines (SVMs) and random forest (RF) machine learning methods were evaluated comparatively on their ability to predict unknown tea samples using models constructed from a predetermined training set. The best predictions of identity were obtained by using RF.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>19427484</pmid><doi>10.1016/j.aca.2008.12.015</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2009-05, Vol.642 (1), p.257-265
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_903615078
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Analytical chemistry
Artificial Intelligence
Chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography, High Pressure Liquid - methods
Correlation optimization warping
Exact sciences and technology
Mass Spectrometry
Other chromatographic methods
Pattern Recognition, Automated
Prediction
Principal Component Analysis
Principle component analysis
Random forest
Support vector machines
Tea
Tea - chemistry
Time Factors
Warping
title A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20chemometric%20study%20of%20chromatograms%20of%20tea%20extracts%20by%20correlation%20optimization%20warping%20in%20conjunction%20with%20PCA,%20support%20vector%20machines%20and%20random%20forest%20data%20modeling&rft.jtitle=Analytica%20chimica%20acta&rft.au=Zheng,%20L.&rft.date=2009-05-29&rft.volume=642&rft.issue=1&rft.spage=257&rft.epage=265&rft.pages=257-265&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/j.aca.2008.12.015&rft_dat=%3Cproquest_cross%3E34414477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20640826&rft_id=info:pmid/19427484&rft_els_id=S000326700802103X&rfr_iscdi=true