A cut-peak function method for global optimization
A new method is proposed for solving box constrained global optimization problems. The basic idea of the method is described as follows: Constructing a so-called cut-peak function and a choice function for each present minimizer, the original problem of finding a global solution is converted into an...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2009-08, Vol.230 (1), p.135-142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | Journal of computational and applied mathematics |
container_volume | 230 |
creator | Wang, Yuncheng Fang, Weiwu Wu, Tianjiao |
description | A new method is proposed for solving box constrained global optimization problems. The basic idea of the method is described as follows: Constructing a so-called cut-peak function and a choice function for each present minimizer, the original problem of finding a global solution is converted into an auxiliary minimization problem of finding local minimizers of the choice function, whose objective function values are smaller than the previous ones. For a local minimum solution of auxiliary problems this procedure is repeated until no new minimizer with a smaller objective function value could be found for the last minimizer. Construction of auxiliary problems and choice of parameters are relatively simple, so the algorithm is relatively easy to implement, and the results of the numerical tests are satisfactory compared to other methods. |
doi_str_mv | 10.1016/j.cam.2008.10.069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903615060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042708005931</els_id><sourcerecordid>34414587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-9228f3970aaf5b6f1f617945253409250a7d44e480881ef07c99985dab2759133</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNte1NPWydcmwVMpfkHBi55Dmk00dXdTk62gv96UikdPw8w87ww8CJ1jmGHAzfV6Zk0_IwCy9DNo1AGaYClUjYWQh2gCVIgaGBHH6CTnNUBBMJsgMq_sdqw3zrxXfjvYMcSh6t34FtvKx1S9dnFluipuxtCHb7Nbn6Ijb7rszn7rFL3c3T4vHurl0_3jYr6sLaN0rBUh0lMlwBjPV43HvsFCMU44ZaAIByNaxhyTICV2HoRVSknemhURXGFKp-hqf3eT4sfW5VH3IVvXdWZwcZu1AtpgDg0U8vJfkjKGGZeigHgP2hRzTs7rTQq9SV8ag9551GtdPOqdx92oSCqZi9_jJlvT-WQGG_JfkOCGC85J4W72nCtOPoNLOtvgBuvakJwddRvDP19-ALMdhRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34414587</pqid></control><display><type>article</type><title>A cut-peak function method for global optimization</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Yuncheng ; Fang, Weiwu ; Wu, Tianjiao</creator><creatorcontrib>Wang, Yuncheng ; Fang, Weiwu ; Wu, Tianjiao</creatorcontrib><description>A new method is proposed for solving box constrained global optimization problems. The basic idea of the method is described as follows: Constructing a so-called cut-peak function and a choice function for each present minimizer, the original problem of finding a global solution is converted into an auxiliary minimization problem of finding local minimizers of the choice function, whose objective function values are smaller than the previous ones. For a local minimum solution of auxiliary problems this procedure is repeated until no new minimizer with a smaller objective function value could be found for the last minimizer. Construction of auxiliary problems and choice of parameters are relatively simple, so the algorithm is relatively easy to implement, and the results of the numerical tests are satisfactory compared to other methods.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2008.10.069</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Box constrained minimization problem ; Calculus of variations and optimal control ; Cut-peak function ; Exact sciences and technology ; Global optimization ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Sciences and techniques of general use ; Smoothing technique</subject><ispartof>Journal of computational and applied mathematics, 2009-08, Vol.230 (1), p.135-142</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-9228f3970aaf5b6f1f617945253409250a7d44e480881ef07c99985dab2759133</citedby><cites>FETCH-LOGICAL-c433t-9228f3970aaf5b6f1f617945253409250a7d44e480881ef07c99985dab2759133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2008.10.069$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21657552$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yuncheng</creatorcontrib><creatorcontrib>Fang, Weiwu</creatorcontrib><creatorcontrib>Wu, Tianjiao</creatorcontrib><title>A cut-peak function method for global optimization</title><title>Journal of computational and applied mathematics</title><description>A new method is proposed for solving box constrained global optimization problems. The basic idea of the method is described as follows: Constructing a so-called cut-peak function and a choice function for each present minimizer, the original problem of finding a global solution is converted into an auxiliary minimization problem of finding local minimizers of the choice function, whose objective function values are smaller than the previous ones. For a local minimum solution of auxiliary problems this procedure is repeated until no new minimizer with a smaller objective function value could be found for the last minimizer. Construction of auxiliary problems and choice of parameters are relatively simple, so the algorithm is relatively easy to implement, and the results of the numerical tests are satisfactory compared to other methods.</description><subject>Box constrained minimization problem</subject><subject>Calculus of variations and optimal control</subject><subject>Cut-peak function</subject><subject>Exact sciences and technology</subject><subject>Global optimization</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Sciences and techniques of general use</subject><subject>Smoothing technique</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNte1NPWydcmwVMpfkHBi55Dmk00dXdTk62gv96UikdPw8w87ww8CJ1jmGHAzfV6Zk0_IwCy9DNo1AGaYClUjYWQh2gCVIgaGBHH6CTnNUBBMJsgMq_sdqw3zrxXfjvYMcSh6t34FtvKx1S9dnFluipuxtCHb7Nbn6Ijb7rszn7rFL3c3T4vHurl0_3jYr6sLaN0rBUh0lMlwBjPV43HvsFCMU44ZaAIByNaxhyTICV2HoRVSknemhURXGFKp-hqf3eT4sfW5VH3IVvXdWZwcZu1AtpgDg0U8vJfkjKGGZeigHgP2hRzTs7rTQq9SV8ag9551GtdPOqdx92oSCqZi9_jJlvT-WQGG_JfkOCGC85J4W72nCtOPoNLOtvgBuvakJwddRvDP19-ALMdhRE</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Wang, Yuncheng</creator><creator>Fang, Weiwu</creator><creator>Wu, Tianjiao</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090801</creationdate><title>A cut-peak function method for global optimization</title><author>Wang, Yuncheng ; Fang, Weiwu ; Wu, Tianjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-9228f3970aaf5b6f1f617945253409250a7d44e480881ef07c99985dab2759133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Box constrained minimization problem</topic><topic>Calculus of variations and optimal control</topic><topic>Cut-peak function</topic><topic>Exact sciences and technology</topic><topic>Global optimization</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Sciences and techniques of general use</topic><topic>Smoothing technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuncheng</creatorcontrib><creatorcontrib>Fang, Weiwu</creatorcontrib><creatorcontrib>Wu, Tianjiao</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuncheng</au><au>Fang, Weiwu</au><au>Wu, Tianjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cut-peak function method for global optimization</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>230</volume><issue>1</issue><spage>135</spage><epage>142</epage><pages>135-142</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>A new method is proposed for solving box constrained global optimization problems. The basic idea of the method is described as follows: Constructing a so-called cut-peak function and a choice function for each present minimizer, the original problem of finding a global solution is converted into an auxiliary minimization problem of finding local minimizers of the choice function, whose objective function values are smaller than the previous ones. For a local minimum solution of auxiliary problems this procedure is repeated until no new minimizer with a smaller objective function value could be found for the last minimizer. Construction of auxiliary problems and choice of parameters are relatively simple, so the algorithm is relatively easy to implement, and the results of the numerical tests are satisfactory compared to other methods.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2008.10.069</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2009-08, Vol.230 (1), p.135-142 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_903615060 |
source | Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Box constrained minimization problem Calculus of variations and optimal control Cut-peak function Exact sciences and technology Global optimization Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Sciences and techniques of general use Smoothing technique |
title | A cut-peak function method for global optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cut-peak%20function%20method%20for%20global%20optimization&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Wang,%20Yuncheng&rft.date=2009-08-01&rft.volume=230&rft.issue=1&rft.spage=135&rft.epage=142&rft.pages=135-142&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2008.10.069&rft_dat=%3Cproquest_cross%3E34414587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34414587&rft_id=info:pmid/&rft_els_id=S0377042708005931&rfr_iscdi=true |