A computationally efficient scheme for the non-linear diffusion equation

This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank–Nicholson scheme, showing that, although this scheme is slight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2009-04, Vol.373 (17), p.1573-1577
Hauptverfasser: Termonia, P., Van de Vyver, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1577
container_issue 17
container_start_page 1573
container_title Physics letters. A
container_volume 373
creator Termonia, P.
Van de Vyver, H.
description This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank–Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.
doi_str_mv 10.1016/j.physleta.2009.02.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903613968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960109002618</els_id><sourcerecordid>34402821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-659a4c9b0b9689f5807cac65f03b751eb8eef3c8a9d9251e58afd2ccf2271a9c3</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4MoOKdfQXrSU-ubpP9ycwx1wsCLnkOavmEZbbMlrbBvb-b0qqfwwvP8IA8htxQyCrR82Ga7zSF0OKqMAYgMWAaFOCMzWlc8ZTkT52QGvCpSUQK9JFchbAGiCWJGVotEu343jWq0blBdd0jQGKstDmMS9AZ7TIzzybjBZHBD2tkBlU9aa8wUopHgfvpWr8mFUV3Am593Tj6en96Xq3T99vK6XKxTzRkb07IQKteigUaUtTBFDZVWuiwM8KYqKDY1ouG6VqIVLN5FrUzLtDaMVVQJzefk_rS7824_YRhlb4PGrlMDuilIAbykPI5H8u5Pkuc5sJrRCJYnUHsXgkcjd972yh8kBXlMLLfyN7E8JpbAZEwcxceTiPHDnxa9DMdwGlvrUY-ydfa_iS9X9Im3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34402821</pqid></control><display><type>article</type><title>A computationally efficient scheme for the non-linear diffusion equation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Termonia, P. ; Van de Vyver, H.</creator><creatorcontrib>Termonia, P. ; Van de Vyver, H.</creatorcontrib><description>This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank–Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2009.02.059</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Atmospheric models ; Diffusion ; Nonlinear instability ; Numerics</subject><ispartof>Physics letters. A, 2009-04, Vol.373 (17), p.1573-1577</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-659a4c9b0b9689f5807cac65f03b751eb8eef3c8a9d9251e58afd2ccf2271a9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2009.02.059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Termonia, P.</creatorcontrib><creatorcontrib>Van de Vyver, H.</creatorcontrib><title>A computationally efficient scheme for the non-linear diffusion equation</title><title>Physics letters. A</title><description>This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank–Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.</description><subject>Atmospheric models</subject><subject>Diffusion</subject><subject>Nonlinear instability</subject><subject>Numerics</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYh4MoOKdfQXrSU-ubpP9ycwx1wsCLnkOavmEZbbMlrbBvb-b0qqfwwvP8IA8htxQyCrR82Ga7zSF0OKqMAYgMWAaFOCMzWlc8ZTkT52QGvCpSUQK9JFchbAGiCWJGVotEu343jWq0blBdd0jQGKstDmMS9AZ7TIzzybjBZHBD2tkBlU9aa8wUopHgfvpWr8mFUV3Am593Tj6en96Xq3T99vK6XKxTzRkb07IQKteigUaUtTBFDZVWuiwM8KYqKDY1ouG6VqIVLN5FrUzLtDaMVVQJzefk_rS7824_YRhlb4PGrlMDuilIAbykPI5H8u5Pkuc5sJrRCJYnUHsXgkcjd972yh8kBXlMLLfyN7E8JpbAZEwcxceTiPHDnxa9DMdwGlvrUY-ydfa_iS9X9Im3</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Termonia, P.</creator><creator>Van de Vyver, H.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>A computationally efficient scheme for the non-linear diffusion equation</title><author>Termonia, P. ; Van de Vyver, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-659a4c9b0b9689f5807cac65f03b751eb8eef3c8a9d9251e58afd2ccf2271a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atmospheric models</topic><topic>Diffusion</topic><topic>Nonlinear instability</topic><topic>Numerics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Termonia, P.</creatorcontrib><creatorcontrib>Van de Vyver, H.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Termonia, P.</au><au>Van de Vyver, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computationally efficient scheme for the non-linear diffusion equation</atitle><jtitle>Physics letters. A</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>373</volume><issue>17</issue><spage>1573</spage><epage>1577</epage><pages>1573-1577</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank–Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2009.02.059</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2009-04, Vol.373 (17), p.1573-1577
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_903613968
source Access via ScienceDirect (Elsevier)
subjects Atmospheric models
Diffusion
Nonlinear instability
Numerics
title A computationally efficient scheme for the non-linear diffusion equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computationally%20efficient%20scheme%20for%20the%20non-linear%20diffusion%20equation&rft.jtitle=Physics%20letters.%20A&rft.au=Termonia,%20P.&rft.date=2009-04-01&rft.volume=373&rft.issue=17&rft.spage=1573&rft.epage=1577&rft.pages=1573-1577&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2009.02.059&rft_dat=%3Cproquest_cross%3E34402821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34402821&rft_id=info:pmid/&rft_els_id=S0375960109002618&rfr_iscdi=true