Synthesis and Photocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets for Hydrogen Production from a Water/Methanol System without Cocatalyst Loading

Rhodium-doped calcium niobate nanosheets were synthesized by exfoliating layered KCa2Nb3–x Rh x O10−δ and exhibited high photocatalytic activity for H2 production from a water/methanol system without cocatalyst loading. The maximum H2 production rate of the nanosheets was 165 times larger than that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2011-11, Vol.133 (45), p.18034-18037
Hauptverfasser: Okamoto, Yohei, Ida, Shintaro, Hyodo, Junji, Hagiwara, Hidehisa, Ishihara, Tatsumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18037
container_issue 45
container_start_page 18034
container_title Journal of the American Chemical Society
container_volume 133
creator Okamoto, Yohei
Ida, Shintaro
Hyodo, Junji
Hagiwara, Hidehisa
Ishihara, Tatsumi
description Rhodium-doped calcium niobate nanosheets were synthesized by exfoliating layered KCa2Nb3–x Rh x O10−δ and exhibited high photocatalytic activity for H2 production from a water/methanol system without cocatalyst loading. The maximum H2 production rate of the nanosheets was 165 times larger than that of the parent Rh-doped layered oxide. The quantum efficiency at 300 nm was 65%. In this system, the methanol was oxidized to formaldehyde (main product), formic acid, and carbon dioxide by holes, whereas electrons cause the reduction of water to H2. The conductivity of the parent layered oxide was decreased by doping, which indicates the octahedral RhO6 unit in the lattice of the nanosheet functions as an electron trap site. The RhO6 units in the nanosheet probably also act as reaction sites for H2 evolution.
doi_str_mv 10.1021/ja207103j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903146945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>903146945</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-dd1d9453fb8eed3e97f08900c4cc1bdcc306017c725b86f17326d20e2c9177b43</originalsourceid><addsrcrecordid>eNptkc1u1DAUhS0EosPAghdAd4MQi1DbycTJshp-ijSUioJYRo5903iU5E5tB5TH4U1xNUNXrK6O9N1zdHQYeyn4O8GlON9ryZXg-f4RW4mN5NlGyPIxW3HOZaaqMj9jz0LYJ1nISjxlZ1LUdV1ysWJ_bpYp9hhcAD1ZuO4pktFRD0t0Bi5MdL9cXIA6-NaTdfOYvacDWtjqwSQFV45aHRGu9EShR4wBOvJwuVhPtzjBtSc7JxeaoPM0goafCffnXzD26WWAmyVEHOG3iz3NEban9BBhR9q66fY5e9LpIeCL012zHx8_fN9eZruvnz5vL3aZLoSKmbXC1sUm79oK0eZYq45XNeemMEa01picp8LKKLlpq7ITKpellRylqYVSbZGv2Zuj78HT3YwhNqMLBodBT0hzaGqei6K8j1izt0fSeArBY9ccvBu1XxrBm_tBmodBEvvq5Dq3I9oH8t8CCXh9BLQJzZ5mP6WS_zH6CyN-lRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903146945</pqid></control><display><type>article</type><title>Synthesis and Photocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets for Hydrogen Production from a Water/Methanol System without Cocatalyst Loading</title><source>MEDLINE</source><source>ACS Publications</source><creator>Okamoto, Yohei ; Ida, Shintaro ; Hyodo, Junji ; Hagiwara, Hidehisa ; Ishihara, Tatsumi</creator><creatorcontrib>Okamoto, Yohei ; Ida, Shintaro ; Hyodo, Junji ; Hagiwara, Hidehisa ; Ishihara, Tatsumi</creatorcontrib><description>Rhodium-doped calcium niobate nanosheets were synthesized by exfoliating layered KCa2Nb3–x Rh x O10−δ and exhibited high photocatalytic activity for H2 production from a water/methanol system without cocatalyst loading. The maximum H2 production rate of the nanosheets was 165 times larger than that of the parent Rh-doped layered oxide. The quantum efficiency at 300 nm was 65%. In this system, the methanol was oxidized to formaldehyde (main product), formic acid, and carbon dioxide by holes, whereas electrons cause the reduction of water to H2. The conductivity of the parent layered oxide was decreased by doping, which indicates the octahedral RhO6 unit in the lattice of the nanosheet functions as an electron trap site. The RhO6 units in the nanosheet probably also act as reaction sites for H2 evolution.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja207103j</identifier><identifier>PMID: 21999601</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Hydrogen - chemistry ; Methanol - chemistry ; Nanoshells - chemistry ; Niobium - chemistry ; Organometallic Compounds - chemical synthesis ; Organometallic Compounds - chemistry ; Particle Size ; Photochemical Processes ; Rhodium - chemistry ; Surface Properties ; Water - chemistry</subject><ispartof>Journal of the American Chemical Society, 2011-11, Vol.133 (45), p.18034-18037</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-dd1d9453fb8eed3e97f08900c4cc1bdcc306017c725b86f17326d20e2c9177b43</citedby><cites>FETCH-LOGICAL-a417t-dd1d9453fb8eed3e97f08900c4cc1bdcc306017c725b86f17326d20e2c9177b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja207103j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja207103j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21999601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okamoto, Yohei</creatorcontrib><creatorcontrib>Ida, Shintaro</creatorcontrib><creatorcontrib>Hyodo, Junji</creatorcontrib><creatorcontrib>Hagiwara, Hidehisa</creatorcontrib><creatorcontrib>Ishihara, Tatsumi</creatorcontrib><title>Synthesis and Photocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets for Hydrogen Production from a Water/Methanol System without Cocatalyst Loading</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Rhodium-doped calcium niobate nanosheets were synthesized by exfoliating layered KCa2Nb3–x Rh x O10−δ and exhibited high photocatalytic activity for H2 production from a water/methanol system without cocatalyst loading. The maximum H2 production rate of the nanosheets was 165 times larger than that of the parent Rh-doped layered oxide. The quantum efficiency at 300 nm was 65%. In this system, the methanol was oxidized to formaldehyde (main product), formic acid, and carbon dioxide by holes, whereas electrons cause the reduction of water to H2. The conductivity of the parent layered oxide was decreased by doping, which indicates the octahedral RhO6 unit in the lattice of the nanosheet functions as an electron trap site. The RhO6 units in the nanosheet probably also act as reaction sites for H2 evolution.</description><subject>Catalysis</subject><subject>Hydrogen - chemistry</subject><subject>Methanol - chemistry</subject><subject>Nanoshells - chemistry</subject><subject>Niobium - chemistry</subject><subject>Organometallic Compounds - chemical synthesis</subject><subject>Organometallic Compounds - chemistry</subject><subject>Particle Size</subject><subject>Photochemical Processes</subject><subject>Rhodium - chemistry</subject><subject>Surface Properties</subject><subject>Water - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1u1DAUhS0EosPAghdAd4MQi1DbycTJshp-ijSUioJYRo5903iU5E5tB5TH4U1xNUNXrK6O9N1zdHQYeyn4O8GlON9ryZXg-f4RW4mN5NlGyPIxW3HOZaaqMj9jz0LYJ1nISjxlZ1LUdV1ysWJ_bpYp9hhcAD1ZuO4pktFRD0t0Bi5MdL9cXIA6-NaTdfOYvacDWtjqwSQFV45aHRGu9EShR4wBOvJwuVhPtzjBtSc7JxeaoPM0goafCffnXzD26WWAmyVEHOG3iz3NEban9BBhR9q66fY5e9LpIeCL012zHx8_fN9eZruvnz5vL3aZLoSKmbXC1sUm79oK0eZYq45XNeemMEa01picp8LKKLlpq7ITKpellRylqYVSbZGv2Zuj78HT3YwhNqMLBodBT0hzaGqei6K8j1izt0fSeArBY9ccvBu1XxrBm_tBmodBEvvq5Dq3I9oH8t8CCXh9BLQJzZ5mP6WS_zH6CyN-lRw</recordid><startdate>20111116</startdate><enddate>20111116</enddate><creator>Okamoto, Yohei</creator><creator>Ida, Shintaro</creator><creator>Hyodo, Junji</creator><creator>Hagiwara, Hidehisa</creator><creator>Ishihara, Tatsumi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111116</creationdate><title>Synthesis and Photocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets for Hydrogen Production from a Water/Methanol System without Cocatalyst Loading</title><author>Okamoto, Yohei ; Ida, Shintaro ; Hyodo, Junji ; Hagiwara, Hidehisa ; Ishihara, Tatsumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-dd1d9453fb8eed3e97f08900c4cc1bdcc306017c725b86f17326d20e2c9177b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Catalysis</topic><topic>Hydrogen - chemistry</topic><topic>Methanol - chemistry</topic><topic>Nanoshells - chemistry</topic><topic>Niobium - chemistry</topic><topic>Organometallic Compounds - chemical synthesis</topic><topic>Organometallic Compounds - chemistry</topic><topic>Particle Size</topic><topic>Photochemical Processes</topic><topic>Rhodium - chemistry</topic><topic>Surface Properties</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okamoto, Yohei</creatorcontrib><creatorcontrib>Ida, Shintaro</creatorcontrib><creatorcontrib>Hyodo, Junji</creatorcontrib><creatorcontrib>Hagiwara, Hidehisa</creatorcontrib><creatorcontrib>Ishihara, Tatsumi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okamoto, Yohei</au><au>Ida, Shintaro</au><au>Hyodo, Junji</au><au>Hagiwara, Hidehisa</au><au>Ishihara, Tatsumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Photocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets for Hydrogen Production from a Water/Methanol System without Cocatalyst Loading</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2011-11-16</date><risdate>2011</risdate><volume>133</volume><issue>45</issue><spage>18034</spage><epage>18037</epage><pages>18034-18037</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Rhodium-doped calcium niobate nanosheets were synthesized by exfoliating layered KCa2Nb3–x Rh x O10−δ and exhibited high photocatalytic activity for H2 production from a water/methanol system without cocatalyst loading. The maximum H2 production rate of the nanosheets was 165 times larger than that of the parent Rh-doped layered oxide. The quantum efficiency at 300 nm was 65%. In this system, the methanol was oxidized to formaldehyde (main product), formic acid, and carbon dioxide by holes, whereas electrons cause the reduction of water to H2. The conductivity of the parent layered oxide was decreased by doping, which indicates the octahedral RhO6 unit in the lattice of the nanosheet functions as an electron trap site. The RhO6 units in the nanosheet probably also act as reaction sites for H2 evolution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21999601</pmid><doi>10.1021/ja207103j</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2011-11, Vol.133 (45), p.18034-18037
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_903146945
source MEDLINE; ACS Publications
subjects Catalysis
Hydrogen - chemistry
Methanol - chemistry
Nanoshells - chemistry
Niobium - chemistry
Organometallic Compounds - chemical synthesis
Organometallic Compounds - chemistry
Particle Size
Photochemical Processes
Rhodium - chemistry
Surface Properties
Water - chemistry
title Synthesis and Photocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets for Hydrogen Production from a Water/Methanol System without Cocatalyst Loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Photocatalytic%20Activity%20of%20Rhodium-Doped%20Calcium%20Niobate%20Nanosheets%20for%20Hydrogen%20Production%20from%20a%20Water/Methanol%20System%20without%20Cocatalyst%20Loading&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Okamoto,%20Yohei&rft.date=2011-11-16&rft.volume=133&rft.issue=45&rft.spage=18034&rft.epage=18037&rft.pages=18034-18037&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja207103j&rft_dat=%3Cproquest_cross%3E903146945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903146945&rft_id=info:pmid/21999601&rfr_iscdi=true