Hot Carrier Transport and Photocurrent Response in Graphene
Strong electron–electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of h...
Gespeichert in:
Veröffentlicht in: | Nano letters 2011-11, Vol.11 (11), p.4688-4692 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4692 |
---|---|
container_issue | 11 |
container_start_page | 4688 |
container_title | Nano letters |
container_volume | 11 |
creator | Song, Justin C. W Rudner, Mark S Marcus, Charles M Levitov, Leonid S |
description | Strong electron–electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication. |
doi_str_mv | 10.1021/nl202318u |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903144841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762052241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-731e2bc98d163a2d92c732a4db0894a2986fab4b2e4f4a6276b6a41de7f8bfcd3</originalsourceid><addsrcrecordid>eNp90M9LwzAUwPEgipvTg_-A9CLqoZpfTRN2kqGbMFBknstrmrKOLqlJe_C_t7pZL-IpD_LhPfgidE7wLcGU3NmaYsqI7A7QmCQMx0IpejjMko_QSQgbjLFiCT5GI0oUE4mQYzRduDaagfeV8dHKgw2N820Etohe1q51uvPe2DZ6Nf2HDSaqbDT30KyNNafoqIQ6mLP9O0Fvjw-r2SJePs-fZvfLGHgq2zhlxNBcK1kQwYAWiuqUUeBFjqXiQJUUJeQ8p4aXHARNRS6Ak8KkpcxLXbAJutrtbbx770xos20VtKlrsMZ1IVOYEc4lJ728_leSVFCcUPpNb3ZUexeCN2XW-GoL_iMjOPuqmg1Ve3uxX9vlW1MM8idjDy73AIKGuuw76ir8Op5ygns8ONAh27jO277bHwc_AZqmigc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762052241</pqid></control><display><type>article</type><title>Hot Carrier Transport and Photocurrent Response in Graphene</title><source>ACS Publications</source><source>MEDLINE</source><creator>Song, Justin C. W ; Rudner, Mark S ; Marcus, Charles M ; Levitov, Leonid S</creator><creatorcontrib>Song, Justin C. W ; Rudner, Mark S ; Marcus, Charles M ; Levitov, Leonid S</creatorcontrib><description>Strong electron–electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl202318u</identifier><identifier>PMID: 21936568</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Carriers ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electric Conductivity ; Electric potential ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport phenomena in thin films and low-dimensional structures ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Gates ; Graphene ; Graphite - chemistry ; Graphite - radiation effects ; Light ; Materials science ; Materials Testing ; Multiplication ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Photoconduction and photovoltaic effects; photodielectric effects ; Photocurrent ; Photoelectric effect ; Physics ; Radiation Dosage ; Specific materials ; Transport ; Voltage</subject><ispartof>Nano letters, 2011-11, Vol.11 (11), p.4688-4692</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-731e2bc98d163a2d92c732a4db0894a2986fab4b2e4f4a6276b6a41de7f8bfcd3</citedby><cites>FETCH-LOGICAL-a478t-731e2bc98d163a2d92c732a4db0894a2986fab4b2e4f4a6276b6a41de7f8bfcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl202318u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl202318u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24741019$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21936568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Justin C. W</creatorcontrib><creatorcontrib>Rudner, Mark S</creatorcontrib><creatorcontrib>Marcus, Charles M</creatorcontrib><creatorcontrib>Levitov, Leonid S</creatorcontrib><title>Hot Carrier Transport and Photocurrent Response in Graphene</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Strong electron–electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.</description><subject>Carriers</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric Conductivity</subject><subject>Electric potential</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport phenomena in thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Gates</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Graphite - radiation effects</subject><subject>Light</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Multiplication</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Photoconduction and photovoltaic effects; photodielectric effects</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Physics</subject><subject>Radiation Dosage</subject><subject>Specific materials</subject><subject>Transport</subject><subject>Voltage</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M9LwzAUwPEgipvTg_-A9CLqoZpfTRN2kqGbMFBknstrmrKOLqlJe_C_t7pZL-IpD_LhPfgidE7wLcGU3NmaYsqI7A7QmCQMx0IpejjMko_QSQgbjLFiCT5GI0oUE4mQYzRduDaagfeV8dHKgw2N820Etohe1q51uvPe2DZ6Nf2HDSaqbDT30KyNNafoqIQ6mLP9O0Fvjw-r2SJePs-fZvfLGHgq2zhlxNBcK1kQwYAWiuqUUeBFjqXiQJUUJeQ8p4aXHARNRS6Ak8KkpcxLXbAJutrtbbx770xos20VtKlrsMZ1IVOYEc4lJ728_leSVFCcUPpNb3ZUexeCN2XW-GoL_iMjOPuqmg1Ve3uxX9vlW1MM8idjDy73AIKGuuw76ir8Op5ygns8ONAh27jO277bHwc_AZqmigc</recordid><startdate>20111109</startdate><enddate>20111109</enddate><creator>Song, Justin C. W</creator><creator>Rudner, Mark S</creator><creator>Marcus, Charles M</creator><creator>Levitov, Leonid S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111109</creationdate><title>Hot Carrier Transport and Photocurrent Response in Graphene</title><author>Song, Justin C. W ; Rudner, Mark S ; Marcus, Charles M ; Levitov, Leonid S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-731e2bc98d163a2d92c732a4db0894a2986fab4b2e4f4a6276b6a41de7f8bfcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Carriers</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric Conductivity</topic><topic>Electric potential</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport phenomena in thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Gates</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Graphite - radiation effects</topic><topic>Light</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Multiplication</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Photoconduction and photovoltaic effects; photodielectric effects</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Physics</topic><topic>Radiation Dosage</topic><topic>Specific materials</topic><topic>Transport</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Justin C. W</creatorcontrib><creatorcontrib>Rudner, Mark S</creatorcontrib><creatorcontrib>Marcus, Charles M</creatorcontrib><creatorcontrib>Levitov, Leonid S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Justin C. W</au><au>Rudner, Mark S</au><au>Marcus, Charles M</au><au>Levitov, Leonid S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot Carrier Transport and Photocurrent Response in Graphene</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-11-09</date><risdate>2011</risdate><volume>11</volume><issue>11</issue><spage>4688</spage><epage>4692</epage><pages>4688-4692</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Strong electron–electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21936568</pmid><doi>10.1021/nl202318u</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2011-11, Vol.11 (11), p.4688-4692 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_903144841 |
source | ACS Publications; MEDLINE |
subjects | Carriers Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electric Conductivity Electric potential Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport phenomena in thin films and low-dimensional structures Exact sciences and technology Fullerenes and related materials diamonds, graphite Gates Graphene Graphite - chemistry Graphite - radiation effects Light Materials science Materials Testing Multiplication Nanostructures - chemistry Nanostructures - radiation effects Photoconduction and photovoltaic effects photodielectric effects Photocurrent Photoelectric effect Physics Radiation Dosage Specific materials Transport Voltage |
title | Hot Carrier Transport and Photocurrent Response in Graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20Carrier%20Transport%20and%20Photocurrent%20Response%20in%20Graphene&rft.jtitle=Nano%20letters&rft.au=Song,%20Justin%20C.%20W&rft.date=2011-11-09&rft.volume=11&rft.issue=11&rft.spage=4688&rft.epage=4692&rft.pages=4688-4692&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl202318u&rft_dat=%3Cproquest_cross%3E1762052241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762052241&rft_id=info:pmid/21936568&rfr_iscdi=true |