Effect of Nanochannel Geometry on DNA Structure in the Presence of Macromolecular Crowding Agent

We experimentally and numerically study the effects of macromolecular crowding agents on DNA structure when confined to a nanochannel. Curiously, DNA response to crowding is significantly different between bulk phase, nanoslit confinement, and nanotube confinement. Coarse grained Brownian dynamics s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2011-11, Vol.11 (11), p.5047-5053
Hauptverfasser: Jones, Jeremy J, van der Maarel, Johan R. C, Doyle, Patrick S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5053
container_issue 11
container_start_page 5047
container_title Nano letters
container_volume 11
creator Jones, Jeremy J
van der Maarel, Johan R. C
Doyle, Patrick S
description We experimentally and numerically study the effects of macromolecular crowding agents on DNA structure when confined to a nanochannel. Curiously, DNA response to crowding is significantly different between bulk phase, nanoslit confinement, and nanotube confinement. Coarse grained Brownian dynamics simulations reproduce trends seen in the experiments and allow us to develop a deeper understanding of the key physics at play in these systems. It is proposed that the occupancy of free volume next to the channel wall by crowders causes an effective reduction in confining dimensions of the channel that initially swells DNA in nanoconfinement.
doi_str_mv 10.1021/nl203114f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903144182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>903144182</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-f5cf4cf0ed2cb36d210efdab242cea795406af9c409eb5e9ac261d343dd57d873</originalsourceid><addsrcrecordid>eNqF0clKBDEQBuAgivvBF5BcRD2MVpZechzGFdxAPbeZpKIt3Ykm3Yhvb4vjeBE9VQ5fquD_CdlicMCAs0PfcBCMSbdAVlkmYJQrxRfn71KukLWUngFAiQyWyQpnqix5Cavk4dg5NB0Njl5pH8yT9h4beoqhxS6-0-Dp0dWY3naxN10fkdaedk9IbyIm9AY_P15qE0MbGjR9oyOdxPBma_9Ix4_ouw2y5HSTcHM218n9yfHd5Gx0cX16PhlfjLQs8m7kMuOkcYCWm6nILWeAzuopl9ygLlQmIddOGQkKpxkqbXjOrJDC2qywZSHWye7X3pcYXntMXdXWyWDTaI-hT5UaEpKSlXyQe39KVuQchuRk9j_NhCxFzgsY6P4XHbJIKaKrXmLd6vheMag-W6rmLQ12e7a2n7Zo5_K7lgHszIBORjcuam_q9ONkIRkU6sdpk6rn0Ec_RPzLwQ93faT7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534836270</pqid></control><display><type>article</type><title>Effect of Nanochannel Geometry on DNA Structure in the Presence of Macromolecular Crowding Agent</title><source>MEDLINE</source><source>ACS Publications</source><creator>Jones, Jeremy J ; van der Maarel, Johan R. C ; Doyle, Patrick S</creator><creatorcontrib>Jones, Jeremy J ; van der Maarel, Johan R. C ; Doyle, Patrick S</creatorcontrib><description>We experimentally and numerically study the effects of macromolecular crowding agents on DNA structure when confined to a nanochannel. Curiously, DNA response to crowding is significantly different between bulk phase, nanoslit confinement, and nanotube confinement. Coarse grained Brownian dynamics simulations reproduce trends seen in the experiments and allow us to develop a deeper understanding of the key physics at play in these systems. It is proposed that the occupancy of free volume next to the channel wall by crowders causes an effective reduction in confining dimensions of the channel that initially swells DNA in nanoconfinement.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl203114f</identifier><identifier>PMID: 21988280</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Biotechnology ; Channels ; Computer Simulation ; Condensed matter: structure, mechanical and thermal properties ; Confinement ; Confining ; Cross-disciplinary physics: materials science; rheology ; Crowding ; Deoxyribonucleic acid ; DNA - chemistry ; DNA - ultrastructure ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Macromolecular Substances - chemistry ; Materials science ; Materials Testing ; Methods. Procedures. Technologies ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotubes ; Others ; Particle Size ; Physics ; Solid surfaces and solid-solid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Various methods and equipments ; Walls</subject><ispartof>Nano letters, 2011-11, Vol.11 (11), p.5047-5053</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-f5cf4cf0ed2cb36d210efdab242cea795406af9c409eb5e9ac261d343dd57d873</citedby><cites>FETCH-LOGICAL-a476t-f5cf4cf0ed2cb36d210efdab242cea795406af9c409eb5e9ac261d343dd57d873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl203114f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl203114f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24741079$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21988280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Jeremy J</creatorcontrib><creatorcontrib>van der Maarel, Johan R. C</creatorcontrib><creatorcontrib>Doyle, Patrick S</creatorcontrib><title>Effect of Nanochannel Geometry on DNA Structure in the Presence of Macromolecular Crowding Agent</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We experimentally and numerically study the effects of macromolecular crowding agents on DNA structure when confined to a nanochannel. Curiously, DNA response to crowding is significantly different between bulk phase, nanoslit confinement, and nanotube confinement. Coarse grained Brownian dynamics simulations reproduce trends seen in the experiments and allow us to develop a deeper understanding of the key physics at play in these systems. It is proposed that the occupancy of free volume next to the channel wall by crowders causes an effective reduction in confining dimensions of the channel that initially swells DNA in nanoconfinement.</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Channels</subject><subject>Computer Simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Confinement</subject><subject>Confining</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crowding</subject><subject>Deoxyribonucleic acid</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Methods. Procedures. Technologies</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotubes</subject><subject>Others</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Various methods and equipments</subject><subject>Walls</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0clKBDEQBuAgivvBF5BcRD2MVpZechzGFdxAPbeZpKIt3Ykm3Yhvb4vjeBE9VQ5fquD_CdlicMCAs0PfcBCMSbdAVlkmYJQrxRfn71KukLWUngFAiQyWyQpnqix5Cavk4dg5NB0Njl5pH8yT9h4beoqhxS6-0-Dp0dWY3naxN10fkdaedk9IbyIm9AY_P15qE0MbGjR9oyOdxPBma_9Ix4_ouw2y5HSTcHM218n9yfHd5Gx0cX16PhlfjLQs8m7kMuOkcYCWm6nILWeAzuopl9ygLlQmIddOGQkKpxkqbXjOrJDC2qywZSHWye7X3pcYXntMXdXWyWDTaI-hT5UaEpKSlXyQe39KVuQchuRk9j_NhCxFzgsY6P4XHbJIKaKrXmLd6vheMag-W6rmLQ12e7a2n7Zo5_K7lgHszIBORjcuam_q9ONkIRkU6sdpk6rn0Ec_RPzLwQ93faT7</recordid><startdate>20111109</startdate><enddate>20111109</enddate><creator>Jones, Jeremy J</creator><creator>van der Maarel, Johan R. C</creator><creator>Doyle, Patrick S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111109</creationdate><title>Effect of Nanochannel Geometry on DNA Structure in the Presence of Macromolecular Crowding Agent</title><author>Jones, Jeremy J ; van der Maarel, Johan R. C ; Doyle, Patrick S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-f5cf4cf0ed2cb36d210efdab242cea795406af9c409eb5e9ac261d343dd57d873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Channels</topic><topic>Computer Simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Confinement</topic><topic>Confining</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crowding</topic><topic>Deoxyribonucleic acid</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Methods. Procedures. Technologies</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotubes</topic><topic>Others</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Various methods and equipments</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Jeremy J</creatorcontrib><creatorcontrib>van der Maarel, Johan R. C</creatorcontrib><creatorcontrib>Doyle, Patrick S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Jeremy J</au><au>van der Maarel, Johan R. C</au><au>Doyle, Patrick S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Nanochannel Geometry on DNA Structure in the Presence of Macromolecular Crowding Agent</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-11-09</date><risdate>2011</risdate><volume>11</volume><issue>11</issue><spage>5047</spage><epage>5053</epage><pages>5047-5053</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We experimentally and numerically study the effects of macromolecular crowding agents on DNA structure when confined to a nanochannel. Curiously, DNA response to crowding is significantly different between bulk phase, nanoslit confinement, and nanotube confinement. Coarse grained Brownian dynamics simulations reproduce trends seen in the experiments and allow us to develop a deeper understanding of the key physics at play in these systems. It is proposed that the occupancy of free volume next to the channel wall by crowders causes an effective reduction in confining dimensions of the channel that initially swells DNA in nanoconfinement.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21988280</pmid><doi>10.1021/nl203114f</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2011-11, Vol.11 (11), p.5047-5053
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_903144182
source MEDLINE; ACS Publications
subjects Biological and medical sciences
Biotechnology
Channels
Computer Simulation
Condensed matter: structure, mechanical and thermal properties
Confinement
Confining
Cross-disciplinary physics: materials science
rheology
Crowding
Deoxyribonucleic acid
DNA - chemistry
DNA - ultrastructure
Dynamical systems
Dynamics
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Macromolecular Substances - chemistry
Materials science
Materials Testing
Methods. Procedures. Technologies
Models, Chemical
Models, Molecular
Molecular Conformation
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotubes
Others
Particle Size
Physics
Solid surfaces and solid-solid interfaces
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Various methods and equipments
Walls
title Effect of Nanochannel Geometry on DNA Structure in the Presence of Macromolecular Crowding Agent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Nanochannel%20Geometry%20on%20DNA%20Structure%20in%20the%20Presence%20of%20Macromolecular%20Crowding%20Agent&rft.jtitle=Nano%20letters&rft.au=Jones,%20Jeremy%20J&rft.date=2011-11-09&rft.volume=11&rft.issue=11&rft.spage=5047&rft.epage=5053&rft.pages=5047-5053&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl203114f&rft_dat=%3Cproquest_cross%3E903144182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534836270&rft_id=info:pmid/21988280&rfr_iscdi=true