Metabolic engineering of Escherichia coli for α-farnesene production

Sesquiterpenes are important materials in pharmaceuticals and industry. Metabolic engineering has been successfully used to produce these valuable compounds in microbial hosts. However, the microbial potential of sesquiterpene production is limited by the poor heterologous expression of plant sesqui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2011-11, Vol.13 (6), p.648-655
Hauptverfasser: Wang, Chonglong, Yoon, Sang-Hwal, Jang, Hui-Jeong, Chung, Young-Ryun, Kim, Jae-Yean, Choi, Eui-Sung, Kim, Seon-Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 655
container_issue 6
container_start_page 648
container_title Metabolic engineering
container_volume 13
creator Wang, Chonglong
Yoon, Sang-Hwal
Jang, Hui-Jeong
Chung, Young-Ryun
Kim, Jae-Yean
Choi, Eui-Sung
Kim, Seon-Won
description Sesquiterpenes are important materials in pharmaceuticals and industry. Metabolic engineering has been successfully used to produce these valuable compounds in microbial hosts. However, the microbial potential of sesquiterpene production is limited by the poor heterologous expression of plant sesquiterpene synthases and the deficient FPP precursor supply. In this study, we engineered E. coli to produce α-farnesene using a codon-optimized α-farnesene synthase and an exogenous MVA pathway. Codon optimization of α-farnesene synthase improved both the synthase expression and α-farnesene production. Augmentation of the metabolic flux for FPP synthesis conferred a 1.6- to 48.0-fold increase in α-farnesene production. An additional increase in α-farnesene production was achieved by the protein fusion of FPP synthase and α-farnesene synthase. The engineered E. coli strain was able to produce 380.0 mg/L of α-farnesene, which is an approximately 317-fold increase over the initial production of 1.2 mg/L. ► Codon optimization of α-farnesene synthase improved α-farnesene production. ► Insufficient supply of IPP and DMAPP limited α-farnesene production. ► Augmentation of metabolic flux for FPP synthesis increased α-farnesene production. ► FPP flux was directed to α-farnesene synthesis by protein fusion. ► Intermediates accumulation limited further increase of α-farnesene production.
doi_str_mv 10.1016/j.ymben.2011.08.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902812731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717611000814</els_id><sourcerecordid>902812731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9c9e6a2c53bc8dd7f6d035f49afee6968dedbeb5df8179bb9159947f972179f83</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotl6eQNDZuZoxmWlzWbiQUi9QcaGuQyY5aVPapCZTwcfyRXwmU6tduso58P0nPx9CZwRXBBN6Na8-li34qsaEVJhXGJM91CdY0JIRPtjfzYz20FFK8wyQoSCHqFcTgVktRB-NH6FTbVg4XYCfOg8QnZ8WwRbjpGd50TOnCp2BwoZYfH2WVkUPCTwUqxjMWncu-BN0YNUiwenve4xeb8cvo_ty8nT3MLqZlLrhdVcKLYCqWg-bVnNjmKUGN0M7EMoCUEG5AdNCOzSWEybaVuS6YsCsYHXeLW-O0eX2bv76bQ2pk0uXNCwWykNYJylwzUnNGpLJZkvqGFKKYOUquqWKH5JgudEn5_JHn9zok5jLbCenzn_vr9slmF3mz1cGLraAVUGqaXRJvj7nCzSnGcVsU_F6S0D28O4gyqQdeA3GRdCdNMH9W-EbxlKMYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902812731</pqid></control><display><type>article</type><title>Metabolic engineering of Escherichia coli for α-farnesene production</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Chonglong ; Yoon, Sang-Hwal ; Jang, Hui-Jeong ; Chung, Young-Ryun ; Kim, Jae-Yean ; Choi, Eui-Sung ; Kim, Seon-Won</creator><creatorcontrib>Wang, Chonglong ; Yoon, Sang-Hwal ; Jang, Hui-Jeong ; Chung, Young-Ryun ; Kim, Jae-Yean ; Choi, Eui-Sung ; Kim, Seon-Won</creatorcontrib><description>Sesquiterpenes are important materials in pharmaceuticals and industry. Metabolic engineering has been successfully used to produce these valuable compounds in microbial hosts. However, the microbial potential of sesquiterpene production is limited by the poor heterologous expression of plant sesquiterpene synthases and the deficient FPP precursor supply. In this study, we engineered E. coli to produce α-farnesene using a codon-optimized α-farnesene synthase and an exogenous MVA pathway. Codon optimization of α-farnesene synthase improved both the synthase expression and α-farnesene production. Augmentation of the metabolic flux for FPP synthesis conferred a 1.6- to 48.0-fold increase in α-farnesene production. An additional increase in α-farnesene production was achieved by the protein fusion of FPP synthase and α-farnesene synthase. The engineered E. coli strain was able to produce 380.0 mg/L of α-farnesene, which is an approximately 317-fold increase over the initial production of 1.2 mg/L. ► Codon optimization of α-farnesene synthase improved α-farnesene production. ► Insufficient supply of IPP and DMAPP limited α-farnesene production. ► Augmentation of metabolic flux for FPP synthesis increased α-farnesene production. ► FPP flux was directed to α-farnesene synthesis by protein fusion. ► Intermediates accumulation limited further increase of α-farnesene production.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2011.08.001</identifier><identifier>PMID: 21907299</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Codon ; Codon optimization ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; FPP synthesis ; Geranyltranstransferase - genetics ; Geranyltranstransferase - metabolism ; Metabolic Engineering ; Mevalonate pathway ; Organisms, Genetically Modified ; Protein fusion ; Pyrophosphatases - genetics ; Pyrophosphatases - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Sesquiterpenes - metabolism ; α-Farnesene</subject><ispartof>Metabolic engineering, 2011-11, Vol.13 (6), p.648-655</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9c9e6a2c53bc8dd7f6d035f49afee6968dedbeb5df8179bb9159947f972179f83</citedby><cites>FETCH-LOGICAL-c382t-9c9e6a2c53bc8dd7f6d035f49afee6968dedbeb5df8179bb9159947f972179f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2011.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21907299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chonglong</creatorcontrib><creatorcontrib>Yoon, Sang-Hwal</creatorcontrib><creatorcontrib>Jang, Hui-Jeong</creatorcontrib><creatorcontrib>Chung, Young-Ryun</creatorcontrib><creatorcontrib>Kim, Jae-Yean</creatorcontrib><creatorcontrib>Choi, Eui-Sung</creatorcontrib><creatorcontrib>Kim, Seon-Won</creatorcontrib><title>Metabolic engineering of Escherichia coli for α-farnesene production</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Sesquiterpenes are important materials in pharmaceuticals and industry. Metabolic engineering has been successfully used to produce these valuable compounds in microbial hosts. However, the microbial potential of sesquiterpene production is limited by the poor heterologous expression of plant sesquiterpene synthases and the deficient FPP precursor supply. In this study, we engineered E. coli to produce α-farnesene using a codon-optimized α-farnesene synthase and an exogenous MVA pathway. Codon optimization of α-farnesene synthase improved both the synthase expression and α-farnesene production. Augmentation of the metabolic flux for FPP synthesis conferred a 1.6- to 48.0-fold increase in α-farnesene production. An additional increase in α-farnesene production was achieved by the protein fusion of FPP synthase and α-farnesene synthase. The engineered E. coli strain was able to produce 380.0 mg/L of α-farnesene, which is an approximately 317-fold increase over the initial production of 1.2 mg/L. ► Codon optimization of α-farnesene synthase improved α-farnesene production. ► Insufficient supply of IPP and DMAPP limited α-farnesene production. ► Augmentation of metabolic flux for FPP synthesis increased α-farnesene production. ► FPP flux was directed to α-farnesene synthesis by protein fusion. ► Intermediates accumulation limited further increase of α-farnesene production.</description><subject>Codon</subject><subject>Codon optimization</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>FPP synthesis</subject><subject>Geranyltranstransferase - genetics</subject><subject>Geranyltranstransferase - metabolism</subject><subject>Metabolic Engineering</subject><subject>Mevalonate pathway</subject><subject>Organisms, Genetically Modified</subject><subject>Protein fusion</subject><subject>Pyrophosphatases - genetics</subject><subject>Pyrophosphatases - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Sesquiterpenes - metabolism</subject><subject>α-Farnesene</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUhoMotl6eQNDZuZoxmWlzWbiQUi9QcaGuQyY5aVPapCZTwcfyRXwmU6tduso58P0nPx9CZwRXBBN6Na8-li34qsaEVJhXGJM91CdY0JIRPtjfzYz20FFK8wyQoSCHqFcTgVktRB-NH6FTbVg4XYCfOg8QnZ8WwRbjpGd50TOnCp2BwoZYfH2WVkUPCTwUqxjMWncu-BN0YNUiwenve4xeb8cvo_ty8nT3MLqZlLrhdVcKLYCqWg-bVnNjmKUGN0M7EMoCUEG5AdNCOzSWEybaVuS6YsCsYHXeLW-O0eX2bv76bQ2pk0uXNCwWykNYJylwzUnNGpLJZkvqGFKKYOUquqWKH5JgudEn5_JHn9zok5jLbCenzn_vr9slmF3mz1cGLraAVUGqaXRJvj7nCzSnGcVsU_F6S0D28O4gyqQdeA3GRdCdNMH9W-EbxlKMYw</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Wang, Chonglong</creator><creator>Yoon, Sang-Hwal</creator><creator>Jang, Hui-Jeong</creator><creator>Chung, Young-Ryun</creator><creator>Kim, Jae-Yean</creator><creator>Choi, Eui-Sung</creator><creator>Kim, Seon-Won</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>Metabolic engineering of Escherichia coli for α-farnesene production</title><author>Wang, Chonglong ; Yoon, Sang-Hwal ; Jang, Hui-Jeong ; Chung, Young-Ryun ; Kim, Jae-Yean ; Choi, Eui-Sung ; Kim, Seon-Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9c9e6a2c53bc8dd7f6d035f49afee6968dedbeb5df8179bb9159947f972179f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Codon</topic><topic>Codon optimization</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>FPP synthesis</topic><topic>Geranyltranstransferase - genetics</topic><topic>Geranyltranstransferase - metabolism</topic><topic>Metabolic Engineering</topic><topic>Mevalonate pathway</topic><topic>Organisms, Genetically Modified</topic><topic>Protein fusion</topic><topic>Pyrophosphatases - genetics</topic><topic>Pyrophosphatases - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Sesquiterpenes - metabolism</topic><topic>α-Farnesene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chonglong</creatorcontrib><creatorcontrib>Yoon, Sang-Hwal</creatorcontrib><creatorcontrib>Jang, Hui-Jeong</creatorcontrib><creatorcontrib>Chung, Young-Ryun</creatorcontrib><creatorcontrib>Kim, Jae-Yean</creatorcontrib><creatorcontrib>Choi, Eui-Sung</creatorcontrib><creatorcontrib>Kim, Seon-Won</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chonglong</au><au>Yoon, Sang-Hwal</au><au>Jang, Hui-Jeong</au><au>Chung, Young-Ryun</au><au>Kim, Jae-Yean</au><au>Choi, Eui-Sung</au><au>Kim, Seon-Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Escherichia coli for α-farnesene production</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>13</volume><issue>6</issue><spage>648</spage><epage>655</epage><pages>648-655</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Sesquiterpenes are important materials in pharmaceuticals and industry. Metabolic engineering has been successfully used to produce these valuable compounds in microbial hosts. However, the microbial potential of sesquiterpene production is limited by the poor heterologous expression of plant sesquiterpene synthases and the deficient FPP precursor supply. In this study, we engineered E. coli to produce α-farnesene using a codon-optimized α-farnesene synthase and an exogenous MVA pathway. Codon optimization of α-farnesene synthase improved both the synthase expression and α-farnesene production. Augmentation of the metabolic flux for FPP synthesis conferred a 1.6- to 48.0-fold increase in α-farnesene production. An additional increase in α-farnesene production was achieved by the protein fusion of FPP synthase and α-farnesene synthase. The engineered E. coli strain was able to produce 380.0 mg/L of α-farnesene, which is an approximately 317-fold increase over the initial production of 1.2 mg/L. ► Codon optimization of α-farnesene synthase improved α-farnesene production. ► Insufficient supply of IPP and DMAPP limited α-farnesene production. ► Augmentation of metabolic flux for FPP synthesis increased α-farnesene production. ► FPP flux was directed to α-farnesene synthesis by protein fusion. ► Intermediates accumulation limited further increase of α-farnesene production.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>21907299</pmid><doi>10.1016/j.ymben.2011.08.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2011-11, Vol.13 (6), p.648-655
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_902812731
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Codon
Codon optimization
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
FPP synthesis
Geranyltranstransferase - genetics
Geranyltranstransferase - metabolism
Metabolic Engineering
Mevalonate pathway
Organisms, Genetically Modified
Protein fusion
Pyrophosphatases - genetics
Pyrophosphatases - metabolism
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Sesquiterpenes - metabolism
α-Farnesene
title Metabolic engineering of Escherichia coli for α-farnesene production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Escherichia%20coli%20for%20%CE%B1-farnesene%20production&rft.jtitle=Metabolic%20engineering&rft.au=Wang,%20Chonglong&rft.date=2011-11-01&rft.volume=13&rft.issue=6&rft.spage=648&rft.epage=655&rft.pages=648-655&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2011.08.001&rft_dat=%3Cproquest_cross%3E902812731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=902812731&rft_id=info:pmid/21907299&rft_els_id=S1096717611000814&rfr_iscdi=true