On the Relation of Slow Feature Analysis and Laplacian Eigenmaps
The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely...
Gespeichert in:
Veröffentlicht in: | Neural computation 2011-12, Vol.23 (12), p.3287-3302 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3302 |
---|---|
container_issue | 12 |
container_start_page | 3287 |
container_title | Neural computation |
container_volume | 23 |
creator | Sprekeler, Henning |
description | The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs. |
doi_str_mv | 10.1162/NECO_a_00214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_902674961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>902674961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-9ec4979433c49139e165fff7860d23105a8d2d843a502c53b565e5d676699aea3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_AgFrtWb54lCKKHjr4kk183l2VrC4sL_gBv4XUmoykzmelkRql_vam76iIFT-_y4ZvvyyPkCYNXjCn--t16tXXoADgr75EFkwIKY8zn-2QBxtpCK6WPycOUrgBAMZAPyDFnllltYEHebCOdvnr63rc4hT7SvqEf2v47PfM4zaOny4jtTQqJYqzpBocWq4CRrsMXHzsc0iNy1GCb_OP9PCGfztYfV-fFZvv2YrXcFJUEMxXWV6XVthQiTyasZ0o2TaONgpqL3ApNzWtTCpTAKykupZJe1iq3txY9ihPyYpc7jP317NPkupAq37YYfT8nZzmYvB7T_5fAlS6tYlk--0de9fOYF75FQlmluczodIeqsU9p9I0bxtDheOMYuNsLuMMLZP50nzlfdr7-g39_eQbP9wBThW0zYqxC-utKXTKwKrvlznXhoFf0Vf-Ni8C4E8BLKxzPz-YeDqz7EYZf4KDMyzsy7uz9E0ZWrIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903696725</pqid></control><display><type>article</type><title>On the Relation of Slow Feature Analysis and Laplacian Eigenmaps</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Sprekeler, Henning</creator><creatorcontrib>Sprekeler, Henning</creatorcontrib><description>The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/NECO_a_00214</identifier><identifier>PMID: 21919780</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Animals ; Applied sciences ; Approximation ; Artificial Intelligence ; Biological and medical sciences ; Computer science; control theory; systems ; Eigenvalues ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Humans ; Laplace transforms ; Learning ; Learning and adaptive systems ; Letters ; Mathematics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Miscellaneous ; Multivariate analysis ; Neural Networks (Computer) ; Neural Pathways - physiology ; Neurons - physiology ; Pattern Recognition, Automated - methods ; Pattern Recognition, Visual - physiology ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Time Factors ; Visual Cortex - physiology</subject><ispartof>Neural computation, 2011-12, Vol.23 (12), p.3287-3302</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright MIT Press Journals Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-9ec4979433c49139e165fff7860d23105a8d2d843a502c53b565e5d676699aea3</citedby><cites>FETCH-LOGICAL-c508t-9ec4979433c49139e165fff7860d23105a8d2d843a502c53b565e5d676699aea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00214$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24741096$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21919780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sprekeler, Henning</creatorcontrib><title>On the Relation of Slow Feature Analysis and Laplacian Eigenmaps</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Laplace transforms</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Letters</subject><subject>Mathematics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Miscellaneous</subject><subject>Multivariate analysis</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - physiology</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern Recognition, Visual - physiology</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Time Factors</subject><subject>Visual Cortex - physiology</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_AgFrtWb54lCKKHjr4kk183l2VrC4sL_gBv4XUmoykzmelkRql_vam76iIFT-_y4ZvvyyPkCYNXjCn--t16tXXoADgr75EFkwIKY8zn-2QBxtpCK6WPycOUrgBAMZAPyDFnllltYEHebCOdvnr63rc4hT7SvqEf2v47PfM4zaOny4jtTQqJYqzpBocWq4CRrsMXHzsc0iNy1GCb_OP9PCGfztYfV-fFZvv2YrXcFJUEMxXWV6XVthQiTyasZ0o2TaONgpqL3ApNzWtTCpTAKykupZJe1iq3txY9ihPyYpc7jP317NPkupAq37YYfT8nZzmYvB7T_5fAlS6tYlk--0de9fOYF75FQlmluczodIeqsU9p9I0bxtDheOMYuNsLuMMLZP50nzlfdr7-g39_eQbP9wBThW0zYqxC-utKXTKwKrvlznXhoFf0Vf-Ni8C4E8BLKxzPz-YeDqz7EYZf4KDMyzsy7uz9E0ZWrIU</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Sprekeler, Henning</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20111201</creationdate><title>On the Relation of Slow Feature Analysis and Laplacian Eigenmaps</title><author>Sprekeler, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-9ec4979433c49139e165fff7860d23105a8d2d843a502c53b565e5d676699aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Laplace transforms</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Letters</topic><topic>Mathematics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Miscellaneous</topic><topic>Multivariate analysis</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - physiology</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern Recognition, Visual - physiology</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Time Factors</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sprekeler, Henning</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sprekeler, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Relation of Slow Feature Analysis and Laplacian Eigenmaps</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>23</volume><issue>12</issue><spage>3287</spage><epage>3302</epage><pages>3287-3302</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>21919780</pmid><doi>10.1162/NECO_a_00214</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2011-12, Vol.23 (12), p.3287-3302 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_proquest_miscellaneous_902674961 |
source | MEDLINE; MIT Press Journals |
subjects | Algorithms Animals Applied sciences Approximation Artificial Intelligence Biological and medical sciences Computer science control theory systems Eigenvalues Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects Humans Laplace transforms Learning Learning and adaptive systems Letters Mathematics Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Miscellaneous Multivariate analysis Neural Networks (Computer) Neural Pathways - physiology Neurons - physiology Pattern Recognition, Automated - methods Pattern Recognition, Visual - physiology Probability and statistics Sciences and techniques of general use Statistics Time Factors Visual Cortex - physiology |
title | On the Relation of Slow Feature Analysis and Laplacian Eigenmaps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Relation%20of%20Slow%20Feature%20Analysis%20and%20Laplacian%20Eigenmaps&rft.jtitle=Neural%20computation&rft.au=Sprekeler,%20Henning&rft.date=2011-12-01&rft.volume=23&rft.issue=12&rft.spage=3287&rft.epage=3302&rft.pages=3287-3302&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/NECO_a_00214&rft_dat=%3Cproquest_pubme%3E902674961%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903696725&rft_id=info:pmid/21919780&rfr_iscdi=true |