On the Relation of Slow Feature Analysis and Laplacian Eigenmaps

The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2011-12, Vol.23 (12), p.3287-3302
1. Verfasser: Sprekeler, Henning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3302
container_issue 12
container_start_page 3287
container_title Neural computation
container_volume 23
creator Sprekeler, Henning
description The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs.
doi_str_mv 10.1162/NECO_a_00214
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_902674961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>902674961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-9ec4979433c49139e165fff7860d23105a8d2d843a502c53b565e5d676699aea3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_AgFrtWb54lCKKHjr4kk183l2VrC4sL_gBv4XUmoykzmelkRql_vam76iIFT-_y4ZvvyyPkCYNXjCn--t16tXXoADgr75EFkwIKY8zn-2QBxtpCK6WPycOUrgBAMZAPyDFnllltYEHebCOdvnr63rc4hT7SvqEf2v47PfM4zaOny4jtTQqJYqzpBocWq4CRrsMXHzsc0iNy1GCb_OP9PCGfztYfV-fFZvv2YrXcFJUEMxXWV6XVthQiTyasZ0o2TaONgpqL3ApNzWtTCpTAKykupZJe1iq3txY9ihPyYpc7jP317NPkupAq37YYfT8nZzmYvB7T_5fAlS6tYlk--0de9fOYF75FQlmluczodIeqsU9p9I0bxtDheOMYuNsLuMMLZP50nzlfdr7-g39_eQbP9wBThW0zYqxC-utKXTKwKrvlznXhoFf0Vf-Ni8C4E8BLKxzPz-YeDqz7EYZf4KDMyzsy7uz9E0ZWrIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903696725</pqid></control><display><type>article</type><title>On the Relation of Slow Feature Analysis and Laplacian Eigenmaps</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Sprekeler, Henning</creator><creatorcontrib>Sprekeler, Henning</creatorcontrib><description>The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/NECO_a_00214</identifier><identifier>PMID: 21919780</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Animals ; Applied sciences ; Approximation ; Artificial Intelligence ; Biological and medical sciences ; Computer science; control theory; systems ; Eigenvalues ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Humans ; Laplace transforms ; Learning ; Learning and adaptive systems ; Letters ; Mathematics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Miscellaneous ; Multivariate analysis ; Neural Networks (Computer) ; Neural Pathways - physiology ; Neurons - physiology ; Pattern Recognition, Automated - methods ; Pattern Recognition, Visual - physiology ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Time Factors ; Visual Cortex - physiology</subject><ispartof>Neural computation, 2011-12, Vol.23 (12), p.3287-3302</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright MIT Press Journals Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-9ec4979433c49139e165fff7860d23105a8d2d843a502c53b565e5d676699aea3</citedby><cites>FETCH-LOGICAL-c508t-9ec4979433c49139e165fff7860d23105a8d2d843a502c53b565e5d676699aea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00214$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24741096$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21919780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sprekeler, Henning</creatorcontrib><title>On the Relation of Slow Feature Analysis and Laplacian Eigenmaps</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Laplace transforms</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Letters</subject><subject>Mathematics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Miscellaneous</subject><subject>Multivariate analysis</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - physiology</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern Recognition, Visual - physiology</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Time Factors</subject><subject>Visual Cortex - physiology</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_AgFrtWb54lCKKHjr4kk183l2VrC4sL_gBv4XUmoykzmelkRql_vam76iIFT-_y4ZvvyyPkCYNXjCn--t16tXXoADgr75EFkwIKY8zn-2QBxtpCK6WPycOUrgBAMZAPyDFnllltYEHebCOdvnr63rc4hT7SvqEf2v47PfM4zaOny4jtTQqJYqzpBocWq4CRrsMXHzsc0iNy1GCb_OP9PCGfztYfV-fFZvv2YrXcFJUEMxXWV6XVthQiTyasZ0o2TaONgpqL3ApNzWtTCpTAKykupZJe1iq3txY9ihPyYpc7jP317NPkupAq37YYfT8nZzmYvB7T_5fAlS6tYlk--0de9fOYF75FQlmluczodIeqsU9p9I0bxtDheOMYuNsLuMMLZP50nzlfdr7-g39_eQbP9wBThW0zYqxC-utKXTKwKrvlznXhoFf0Vf-Ni8C4E8BLKxzPz-YeDqz7EYZf4KDMyzsy7uz9E0ZWrIU</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Sprekeler, Henning</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20111201</creationdate><title>On the Relation of Slow Feature Analysis and Laplacian Eigenmaps</title><author>Sprekeler, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-9ec4979433c49139e165fff7860d23105a8d2d843a502c53b565e5d676699aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Laplace transforms</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Letters</topic><topic>Mathematics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Miscellaneous</topic><topic>Multivariate analysis</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - physiology</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern Recognition, Visual - physiology</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Time Factors</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sprekeler, Henning</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sprekeler, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Relation of Slow Feature Analysis and Laplacian Eigenmaps</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>23</volume><issue>12</issue><spage>3287</spage><epage>3302</epage><pages>3287-3302</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>21919780</pmid><doi>10.1162/NECO_a_00214</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2011-12, Vol.23 (12), p.3287-3302
issn 0899-7667
1530-888X
language eng
recordid cdi_proquest_miscellaneous_902674961
source MEDLINE; MIT Press Journals
subjects Algorithms
Animals
Applied sciences
Approximation
Artificial Intelligence
Biological and medical sciences
Computer science
control theory
systems
Eigenvalues
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Humans
Laplace transforms
Learning
Learning and adaptive systems
Letters
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Miscellaneous
Multivariate analysis
Neural Networks (Computer)
Neural Pathways - physiology
Neurons - physiology
Pattern Recognition, Automated - methods
Pattern Recognition, Visual - physiology
Probability and statistics
Sciences and techniques of general use
Statistics
Time Factors
Visual Cortex - physiology
title On the Relation of Slow Feature Analysis and Laplacian Eigenmaps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Relation%20of%20Slow%20Feature%20Analysis%20and%20Laplacian%20Eigenmaps&rft.jtitle=Neural%20computation&rft.au=Sprekeler,%20Henning&rft.date=2011-12-01&rft.volume=23&rft.issue=12&rft.spage=3287&rft.epage=3302&rft.pages=3287-3302&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/NECO_a_00214&rft_dat=%3Cproquest_pubme%3E902674961%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903696725&rft_id=info:pmid/21919780&rfr_iscdi=true