Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media

► The relationship between the Fe(III)-to-cit ratio and pH-dependent OH production is investigated. ► The generation rate of OH increased in the order of pH 9.0 < 3.0 < 7.0 < 4.0 < 5.0 at Fe(III)-to-cit ratio of 10:150. ► The presence of metal ions inhibited the Fe(III)–cit-induced photo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2011-10, Vol.194, p.202-208
Hauptverfasser: Chen, Yong, Liu, Zizheng, Wang, Zongping, Xue, Miaomiao, Zhu, Xianchen, Tao, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue
container_start_page 202
container_title Journal of hazardous materials
container_volume 194
creator Chen, Yong
Liu, Zizheng
Wang, Zongping
Xue, Miaomiao
Zhu, Xianchen
Tao, Tao
description ► The relationship between the Fe(III)-to-cit ratio and pH-dependent OH production is investigated. ► The generation rate of OH increased in the order of pH 9.0 < 3.0 < 7.0 < 4.0 < 5.0 at Fe(III)-to-cit ratio of 10:150. ► The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn 2+ > Cu 2+ > Ca 2+ > Mg 2+. ► Iron in the Fe(III)–cit system is reused to decrease the process cost and colourity of water. Photogeneration of HO was optimized in Fe(III)–citrate solution within the pH range of 3.0–9.0 to investigate its photoreactivity at neutral pH without the addition of H 2O 2 under simulated sunlight. The generation of HO decreased with increasing pH within the range of 6.0–9.0 at the Fe(III)-to-citrate ratio of 10:50 (10 −6 M). However, when the concentration of citrate increased to 1.5 × 10 −4 M, the formation rate of HO increased in the order of pH 9.0 < 3.0 < 7.0 < 4.0 < 5.0. The pH-dependent HO production was governed by the stability of Fe(II)/Fe(II)–citrate and the amount of O 2 − in the solution. Propranolol can be efficiently photodegraded in Fe(III)–citrate system at pH 7.0 with pseudo-first-order constant 3.1 × 10 −4 s −1. HO was verified to be the main reactive oxygen species (ROS) responsible for the photodegradation of propranolol. The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn 2+ > Cu 2+ > Ca 2+ > Mg 2+. Both humic acid (HA) and fulvic acid (FA) markedly suppressed the degradation of propranolol. Moreover, the iron in Fe(III)–citrate system was reused by a simple addition of citrate to the reaction solution. By GC–MS analysis, the photoproducts of the propranolol were identified and the degradation pathway was proposed. This work suggests that Fe(III)–citrate complexes are good alternative for the advanced treatment of organic pollutants at neutral pH in aqueous solution.
doi_str_mv 10.1016/j.jhazmat.2011.07.081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902375127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389411009629</els_id><sourcerecordid>898839659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-6ba2a44e9f720e4954c7a37f92fffd9dc805cb67ff867595b6c165452e70357a3</originalsourceid><addsrcrecordid>eNqF0sFuFCEYwHFiNHatPoI6F2NN3BEGGMCLMY3VjU000Z4Jw3x02czAFmYb68l38A19Epnsqjd74vKDD-Y_CD0muCaYtK829WZtvo9mqhtMSI1FjSW5gxZECrqklLZ30QJTzJZUKnaEHuS8wRgTwdl9dNQQ2UrCxQLtPq_jFHu4TKY3k4-hiq7aprhNJsQhDlV3U53ByWq1evHrx0_rp2QmqGwctwN8g_y6-ugDTN7ml9UIdm2Cz2NlQl-Bc2Cn-TQI1z7FMEKYzFBU781DdM-ZIcOjw3qMLs7efT39sDz_9H51-vZ8aZmk07LtTGMYA-VEg4EpzqwwVDjVOOd61VuJue1a4ZxsBVe8ay1pOeMNCEx5ocfo-f7c8qKrHeRJjz5bGAYTIO6yVrihgpNG3CqlkpKqlqsiT_4riZiHS9ngQvme2hRzTuD0NvnRpBtNsJ4r6o0-VNRzRY2FLhXLvieHEbuufK-_u_5kK-DZAZhszeBKLOvzP8cEloy2xT3dO2eiNpepmIsvZRIvf4JiQs2vebMXUDJce0g6Ww_Blkqp9NN99Ldc9jfFUsfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770358820</pqid></control><display><type>article</type><title>Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Yong ; Liu, Zizheng ; Wang, Zongping ; Xue, Miaomiao ; Zhu, Xianchen ; Tao, Tao</creator><creatorcontrib>Chen, Yong ; Liu, Zizheng ; Wang, Zongping ; Xue, Miaomiao ; Zhu, Xianchen ; Tao, Tao</creatorcontrib><description><![CDATA[► The relationship between the Fe(III)-to-cit ratio and pH-dependent OH production is investigated. ► The generation rate of OH increased in the order of pH 9.0 < 3.0 < 7.0 < 4.0 < 5.0 at Fe(III)-to-cit ratio of 10:150. ► The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn 2+ > Cu 2+ > Ca 2+ > Mg 2+. ► Iron in the Fe(III)–cit system is reused to decrease the process cost and colourity of water. Photogeneration of HO was optimized in Fe(III)–citrate solution within the pH range of 3.0–9.0 to investigate its photoreactivity at neutral pH without the addition of H 2O 2 under simulated sunlight. The generation of HO decreased with increasing pH within the range of 6.0–9.0 at the Fe(III)-to-citrate ratio of 10:50 (10 −6 M). However, when the concentration of citrate increased to 1.5 × 10 −4 M, the formation rate of HO increased in the order of pH 9.0 < 3.0 < 7.0 < 4.0 < 5.0. The pH-dependent HO production was governed by the stability of Fe(II)/Fe(II)–citrate and the amount of O 2 − in the solution. Propranolol can be efficiently photodegraded in Fe(III)–citrate system at pH 7.0 with pseudo-first-order constant 3.1 × 10 −4 s −1. HO was verified to be the main reactive oxygen species (ROS) responsible for the photodegradation of propranolol. The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn 2+ > Cu 2+ > Ca 2+ > Mg 2+. Both humic acid (HA) and fulvic acid (FA) markedly suppressed the degradation of propranolol. Moreover, the iron in Fe(III)–citrate system was reused by a simple addition of citrate to the reaction solution. By GC–MS analysis, the photoproducts of the propranolol were identified and the degradation pathway was proposed. This work suggests that Fe(III)–citrate complexes are good alternative for the advanced treatment of organic pollutants at neutral pH in aqueous solution.]]></description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.07.081</identifier><identifier>PMID: 21868157</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; aqueous solutions ; Chemical engineering ; Chromatography, High Pressure Liquid ; Citrates ; Citrates - chemistry ; Exact sciences and technology ; Fe(III)–citrate system ; Ferric Compounds - chemistry ; fulvic acids ; gas chromatography ; Gas Chromatography-Mass Spectrometry ; Hazardous materials ; humic acids ; hydrogen peroxide ; Hydrogen-Ion Concentration ; iron ; Kinetics ; mass spectrometry ; Media ; metal ions ; Neutral pH ; oxygen ; Photochemistry ; Photodegradation ; photolysis ; pollutants ; Pollution ; Propranolol ; Propranolol - chemistry ; Reactive Oxygen Species - chemistry ; Reactors ; Simulation ; solar radiation ; Stability ; Sunlight</subject><ispartof>Journal of hazardous materials, 2011-10, Vol.194, p.202-208</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-6ba2a44e9f720e4954c7a37f92fffd9dc805cb67ff867595b6c165452e70357a3</citedby><cites>FETCH-LOGICAL-c483t-6ba2a44e9f720e4954c7a37f92fffd9dc805cb67ff867595b6c165452e70357a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2011.07.081$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24708436$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21868157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Liu, Zizheng</creatorcontrib><creatorcontrib>Wang, Zongping</creatorcontrib><creatorcontrib>Xue, Miaomiao</creatorcontrib><creatorcontrib>Zhu, Xianchen</creatorcontrib><creatorcontrib>Tao, Tao</creatorcontrib><title>Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description><![CDATA[► The relationship between the Fe(III)-to-cit ratio and pH-dependent OH production is investigated. ► The generation rate of OH increased in the order of pH 9.0 < 3.0 < 7.0 < 4.0 < 5.0 at Fe(III)-to-cit ratio of 10:150. ► The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn 2+ > Cu 2+ > Ca 2+ > Mg 2+. ► Iron in the Fe(III)–cit system is reused to decrease the process cost and colourity of water. Photogeneration of HO was optimized in Fe(III)–citrate solution within the pH range of 3.0–9.0 to investigate its photoreactivity at neutral pH without the addition of H 2O 2 under simulated sunlight. The generation of HO decreased with increasing pH within the range of 6.0–9.0 at the Fe(III)-to-citrate ratio of 10:50 (10 −6 M). However, when the concentration of citrate increased to 1.5 × 10 −4 M, the formation rate of HO increased in the order of pH 9.0 < 3.0 < 7.0 < 4.0 < 5.0. The pH-dependent HO production was governed by the stability of Fe(II)/Fe(II)–citrate and the amount of O 2 − in the solution. Propranolol can be efficiently photodegraded in Fe(III)–citrate system at pH 7.0 with pseudo-first-order constant 3.1 × 10 −4 s −1. HO was verified to be the main reactive oxygen species (ROS) responsible for the photodegradation of propranolol. The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn 2+ > Cu 2+ > Ca 2+ > Mg 2+. Both humic acid (HA) and fulvic acid (FA) markedly suppressed the degradation of propranolol. Moreover, the iron in Fe(III)–citrate system was reused by a simple addition of citrate to the reaction solution. By GC–MS analysis, the photoproducts of the propranolol were identified and the degradation pathway was proposed. This work suggests that Fe(III)–citrate complexes are good alternative for the advanced treatment of organic pollutants at neutral pH in aqueous solution.]]></description><subject>Applied sciences</subject><subject>aqueous solutions</subject><subject>Chemical engineering</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Citrates</subject><subject>Citrates - chemistry</subject><subject>Exact sciences and technology</subject><subject>Fe(III)–citrate system</subject><subject>Ferric Compounds - chemistry</subject><subject>fulvic acids</subject><subject>gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Hazardous materials</subject><subject>humic acids</subject><subject>hydrogen peroxide</subject><subject>Hydrogen-Ion Concentration</subject><subject>iron</subject><subject>Kinetics</subject><subject>mass spectrometry</subject><subject>Media</subject><subject>metal ions</subject><subject>Neutral pH</subject><subject>oxygen</subject><subject>Photochemistry</subject><subject>Photodegradation</subject><subject>photolysis</subject><subject>pollutants</subject><subject>Pollution</subject><subject>Propranolol</subject><subject>Propranolol - chemistry</subject><subject>Reactive Oxygen Species - chemistry</subject><subject>Reactors</subject><subject>Simulation</subject><subject>solar radiation</subject><subject>Stability</subject><subject>Sunlight</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0sFuFCEYwHFiNHatPoI6F2NN3BEGGMCLMY3VjU000Z4Jw3x02czAFmYb68l38A19Epnsqjd74vKDD-Y_CD0muCaYtK829WZtvo9mqhtMSI1FjSW5gxZECrqklLZ30QJTzJZUKnaEHuS8wRgTwdl9dNQQ2UrCxQLtPq_jFHu4TKY3k4-hiq7aprhNJsQhDlV3U53ByWq1evHrx0_rp2QmqGwctwN8g_y6-ugDTN7ml9UIdm2Cz2NlQl-Bc2Cn-TQI1z7FMEKYzFBU781DdM-ZIcOjw3qMLs7efT39sDz_9H51-vZ8aZmk07LtTGMYA-VEg4EpzqwwVDjVOOd61VuJue1a4ZxsBVe8ay1pOeMNCEx5ocfo-f7c8qKrHeRJjz5bGAYTIO6yVrihgpNG3CqlkpKqlqsiT_4riZiHS9ngQvme2hRzTuD0NvnRpBtNsJ4r6o0-VNRzRY2FLhXLvieHEbuufK-_u_5kK-DZAZhszeBKLOvzP8cEloy2xT3dO2eiNpepmIsvZRIvf4JiQs2vebMXUDJce0g6Ww_Blkqp9NN99Ldc9jfFUsfs</recordid><startdate>20111030</startdate><enddate>20111030</enddate><creator>Chen, Yong</creator><creator>Liu, Zizheng</creator><creator>Wang, Zongping</creator><creator>Xue, Miaomiao</creator><creator>Zhu, Xianchen</creator><creator>Tao, Tao</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20111030</creationdate><title>Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media</title><author>Chen, Yong ; Liu, Zizheng ; Wang, Zongping ; Xue, Miaomiao ; Zhu, Xianchen ; Tao, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-6ba2a44e9f720e4954c7a37f92fffd9dc805cb67ff867595b6c165452e70357a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>aqueous solutions</topic><topic>Chemical engineering</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Citrates</topic><topic>Citrates - chemistry</topic><topic>Exact sciences and technology</topic><topic>Fe(III)–citrate system</topic><topic>Ferric Compounds - chemistry</topic><topic>fulvic acids</topic><topic>gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Hazardous materials</topic><topic>humic acids</topic><topic>hydrogen peroxide</topic><topic>Hydrogen-Ion Concentration</topic><topic>iron</topic><topic>Kinetics</topic><topic>mass spectrometry</topic><topic>Media</topic><topic>metal ions</topic><topic>Neutral pH</topic><topic>oxygen</topic><topic>Photochemistry</topic><topic>Photodegradation</topic><topic>photolysis</topic><topic>pollutants</topic><topic>Pollution</topic><topic>Propranolol</topic><topic>Propranolol - chemistry</topic><topic>Reactive Oxygen Species - chemistry</topic><topic>Reactors</topic><topic>Simulation</topic><topic>solar radiation</topic><topic>Stability</topic><topic>Sunlight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Liu, Zizheng</creatorcontrib><creatorcontrib>Wang, Zongping</creatorcontrib><creatorcontrib>Xue, Miaomiao</creatorcontrib><creatorcontrib>Zhu, Xianchen</creatorcontrib><creatorcontrib>Tao, Tao</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yong</au><au>Liu, Zizheng</au><au>Wang, Zongping</au><au>Xue, Miaomiao</au><au>Zhu, Xianchen</au><au>Tao, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-10-30</date><risdate>2011</risdate><volume>194</volume><spage>202</spage><epage>208</epage><pages>202-208</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract><![CDATA[► The relationship between the Fe(III)-to-cit ratio and pH-dependent OH production is investigated. ► The generation rate of OH increased in the order of pH 9.0 < 3.0 < 7.0 < 4.0 < 5.0 at Fe(III)-to-cit ratio of 10:150. ► The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn 2+ > Cu 2+ > Ca 2+ > Mg 2+. ► Iron in the Fe(III)–cit system is reused to decrease the process cost and colourity of water. Photogeneration of HO was optimized in Fe(III)–citrate solution within the pH range of 3.0–9.0 to investigate its photoreactivity at neutral pH without the addition of H 2O 2 under simulated sunlight. The generation of HO decreased with increasing pH within the range of 6.0–9.0 at the Fe(III)-to-citrate ratio of 10:50 (10 −6 M). However, when the concentration of citrate increased to 1.5 × 10 −4 M, the formation rate of HO increased in the order of pH 9.0 < 3.0 < 7.0 < 4.0 < 5.0. The pH-dependent HO production was governed by the stability of Fe(II)/Fe(II)–citrate and the amount of O 2 − in the solution. Propranolol can be efficiently photodegraded in Fe(III)–citrate system at pH 7.0 with pseudo-first-order constant 3.1 × 10 −4 s −1. HO was verified to be the main reactive oxygen species (ROS) responsible for the photodegradation of propranolol. The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn 2+ > Cu 2+ > Ca 2+ > Mg 2+. Both humic acid (HA) and fulvic acid (FA) markedly suppressed the degradation of propranolol. Moreover, the iron in Fe(III)–citrate system was reused by a simple addition of citrate to the reaction solution. By GC–MS analysis, the photoproducts of the propranolol were identified and the degradation pathway was proposed. This work suggests that Fe(III)–citrate complexes are good alternative for the advanced treatment of organic pollutants at neutral pH in aqueous solution.]]></abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21868157</pmid><doi>10.1016/j.jhazmat.2011.07.081</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2011-10, Vol.194, p.202-208
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_902375127
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Applied sciences
aqueous solutions
Chemical engineering
Chromatography, High Pressure Liquid
Citrates
Citrates - chemistry
Exact sciences and technology
Fe(III)–citrate system
Ferric Compounds - chemistry
fulvic acids
gas chromatography
Gas Chromatography-Mass Spectrometry
Hazardous materials
humic acids
hydrogen peroxide
Hydrogen-Ion Concentration
iron
Kinetics
mass spectrometry
Media
metal ions
Neutral pH
oxygen
Photochemistry
Photodegradation
photolysis
pollutants
Pollution
Propranolol
Propranolol - chemistry
Reactive Oxygen Species - chemistry
Reactors
Simulation
solar radiation
Stability
Sunlight
title Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T06%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodegradation%20of%20propranolol%20by%20Fe(III)%E2%80%93citrate%20complexes:%20Kinetics,%20mechanism%20and%20effect%20of%20environmental%20media&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Chen,%20Yong&rft.date=2011-10-30&rft.volume=194&rft.spage=202&rft.epage=208&rft.pages=202-208&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2011.07.081&rft_dat=%3Cproquest_cross%3E898839659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770358820&rft_id=info:pmid/21868157&rft_els_id=S0304389411009629&rfr_iscdi=true