Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media
► The relationship between the Fe(III)-to-cit ratio and pH-dependent OH production is investigated. ► The generation rate of OH increased in the order of pH 9.0 < 3.0 < 7.0 < 4.0 < 5.0 at Fe(III)-to-cit ratio of 10:150. ► The presence of metal ions inhibited the Fe(III)–cit-induced photo...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2011-10, Vol.194, p.202-208 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | |
container_start_page | 202 |
container_title | Journal of hazardous materials |
container_volume | 194 |
creator | Chen, Yong Liu, Zizheng Wang, Zongping Xue, Miaomiao Zhu, Xianchen Tao, Tao |
description | ► The relationship between the Fe(III)-to-cit ratio and pH-dependent
OH production is investigated. ► The generation rate of
OH increased in the order of pH 9.0
<
3.0
<
7.0
<
4.0
<
5.0 at Fe(III)-to-cit ratio of 10:150. ► The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn
2+
>
Cu
2+
>
Ca
2+
>
Mg
2+. ► Iron in the Fe(III)–cit system is reused to decrease the process cost and colourity of water.
Photogeneration of HO
was optimized in Fe(III)–citrate solution within the pH range of 3.0–9.0 to investigate its photoreactivity at neutral pH without the addition of H
2O
2 under simulated sunlight. The generation of HO
decreased with increasing pH within the range of 6.0–9.0 at the Fe(III)-to-citrate ratio of 10:50 (10
−6
M). However, when the concentration of citrate increased to 1.5
×
10
−4
M, the formation rate of HO
increased in the order of pH 9.0
<
3.0
<
7.0
<
4.0
<
5.0. The pH-dependent HO
production was governed by the stability of Fe(II)/Fe(II)–citrate and the amount of O
2
− in the solution. Propranolol can be efficiently photodegraded in Fe(III)–citrate system at pH 7.0 with pseudo-first-order constant 3.1
×
10
−4
s
−1. HO
was verified to be the main reactive oxygen species (ROS) responsible for the photodegradation of propranolol. The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn
2+
>
Cu
2+
>
Ca
2+
>
Mg
2+. Both humic acid (HA) and fulvic acid (FA) markedly suppressed the degradation of propranolol. Moreover, the iron in Fe(III)–citrate system was reused by a simple addition of citrate to the reaction solution. By GC–MS analysis, the photoproducts of the propranolol were identified and the degradation pathway was proposed. This work suggests that Fe(III)–citrate complexes are good alternative for the advanced treatment of organic pollutants at neutral pH in aqueous solution. |
doi_str_mv | 10.1016/j.jhazmat.2011.07.081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902375127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389411009629</els_id><sourcerecordid>898839659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-6ba2a44e9f720e4954c7a37f92fffd9dc805cb67ff867595b6c165452e70357a3</originalsourceid><addsrcrecordid>eNqF0sFuFCEYwHFiNHatPoI6F2NN3BEGGMCLMY3VjU000Z4Jw3x02czAFmYb68l38A19Epnsqjd74vKDD-Y_CD0muCaYtK829WZtvo9mqhtMSI1FjSW5gxZECrqklLZ30QJTzJZUKnaEHuS8wRgTwdl9dNQQ2UrCxQLtPq_jFHu4TKY3k4-hiq7aprhNJsQhDlV3U53ByWq1evHrx0_rp2QmqGwctwN8g_y6-ugDTN7ml9UIdm2Cz2NlQl-Bc2Cn-TQI1z7FMEKYzFBU781DdM-ZIcOjw3qMLs7efT39sDz_9H51-vZ8aZmk07LtTGMYA-VEg4EpzqwwVDjVOOd61VuJue1a4ZxsBVe8ay1pOeMNCEx5ocfo-f7c8qKrHeRJjz5bGAYTIO6yVrihgpNG3CqlkpKqlqsiT_4riZiHS9ngQvme2hRzTuD0NvnRpBtNsJ4r6o0-VNRzRY2FLhXLvieHEbuufK-_u_5kK-DZAZhszeBKLOvzP8cEloy2xT3dO2eiNpepmIsvZRIvf4JiQs2vebMXUDJce0g6Ww_Blkqp9NN99Ldc9jfFUsfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770358820</pqid></control><display><type>article</type><title>Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Yong ; Liu, Zizheng ; Wang, Zongping ; Xue, Miaomiao ; Zhu, Xianchen ; Tao, Tao</creator><creatorcontrib>Chen, Yong ; Liu, Zizheng ; Wang, Zongping ; Xue, Miaomiao ; Zhu, Xianchen ; Tao, Tao</creatorcontrib><description><![CDATA[► The relationship between the Fe(III)-to-cit ratio and pH-dependent
OH production is investigated. ► The generation rate of
OH increased in the order of pH 9.0
<
3.0
<
7.0
<
4.0
<
5.0 at Fe(III)-to-cit ratio of 10:150. ► The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn
2+
>
Cu
2+
>
Ca
2+
>
Mg
2+. ► Iron in the Fe(III)–cit system is reused to decrease the process cost and colourity of water.
Photogeneration of HO
was optimized in Fe(III)–citrate solution within the pH range of 3.0–9.0 to investigate its photoreactivity at neutral pH without the addition of H
2O
2 under simulated sunlight. The generation of HO
decreased with increasing pH within the range of 6.0–9.0 at the Fe(III)-to-citrate ratio of 10:50 (10
−6
M). However, when the concentration of citrate increased to 1.5
×
10
−4
M, the formation rate of HO
increased in the order of pH 9.0
<
3.0
<
7.0
<
4.0
<
5.0. The pH-dependent HO
production was governed by the stability of Fe(II)/Fe(II)–citrate and the amount of O
2
− in the solution. Propranolol can be efficiently photodegraded in Fe(III)–citrate system at pH 7.0 with pseudo-first-order constant 3.1
×
10
−4
s
−1. HO
was verified to be the main reactive oxygen species (ROS) responsible for the photodegradation of propranolol. The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn
2+
>
Cu
2+
>
Ca
2+
>
Mg
2+. Both humic acid (HA) and fulvic acid (FA) markedly suppressed the degradation of propranolol. Moreover, the iron in Fe(III)–citrate system was reused by a simple addition of citrate to the reaction solution. By GC–MS analysis, the photoproducts of the propranolol were identified and the degradation pathway was proposed. This work suggests that Fe(III)–citrate complexes are good alternative for the advanced treatment of organic pollutants at neutral pH in aqueous solution.]]></description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.07.081</identifier><identifier>PMID: 21868157</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; aqueous solutions ; Chemical engineering ; Chromatography, High Pressure Liquid ; Citrates ; Citrates - chemistry ; Exact sciences and technology ; Fe(III)–citrate system ; Ferric Compounds - chemistry ; fulvic acids ; gas chromatography ; Gas Chromatography-Mass Spectrometry ; Hazardous materials ; humic acids ; hydrogen peroxide ; Hydrogen-Ion Concentration ; iron ; Kinetics ; mass spectrometry ; Media ; metal ions ; Neutral pH ; oxygen ; Photochemistry ; Photodegradation ; photolysis ; pollutants ; Pollution ; Propranolol ; Propranolol - chemistry ; Reactive Oxygen Species - chemistry ; Reactors ; Simulation ; solar radiation ; Stability ; Sunlight</subject><ispartof>Journal of hazardous materials, 2011-10, Vol.194, p.202-208</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-6ba2a44e9f720e4954c7a37f92fffd9dc805cb67ff867595b6c165452e70357a3</citedby><cites>FETCH-LOGICAL-c483t-6ba2a44e9f720e4954c7a37f92fffd9dc805cb67ff867595b6c165452e70357a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2011.07.081$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24708436$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21868157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Liu, Zizheng</creatorcontrib><creatorcontrib>Wang, Zongping</creatorcontrib><creatorcontrib>Xue, Miaomiao</creatorcontrib><creatorcontrib>Zhu, Xianchen</creatorcontrib><creatorcontrib>Tao, Tao</creatorcontrib><title>Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description><![CDATA[► The relationship between the Fe(III)-to-cit ratio and pH-dependent
OH production is investigated. ► The generation rate of
OH increased in the order of pH 9.0
<
3.0
<
7.0
<
4.0
<
5.0 at Fe(III)-to-cit ratio of 10:150. ► The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn
2+
>
Cu
2+
>
Ca
2+
>
Mg
2+. ► Iron in the Fe(III)–cit system is reused to decrease the process cost and colourity of water.
Photogeneration of HO
was optimized in Fe(III)–citrate solution within the pH range of 3.0–9.0 to investigate its photoreactivity at neutral pH without the addition of H
2O
2 under simulated sunlight. The generation of HO
decreased with increasing pH within the range of 6.0–9.0 at the Fe(III)-to-citrate ratio of 10:50 (10
−6
M). However, when the concentration of citrate increased to 1.5
×
10
−4
M, the formation rate of HO
increased in the order of pH 9.0
<
3.0
<
7.0
<
4.0
<
5.0. The pH-dependent HO
production was governed by the stability of Fe(II)/Fe(II)–citrate and the amount of O
2
− in the solution. Propranolol can be efficiently photodegraded in Fe(III)–citrate system at pH 7.0 with pseudo-first-order constant 3.1
×
10
−4
s
−1. HO
was verified to be the main reactive oxygen species (ROS) responsible for the photodegradation of propranolol. The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn
2+
>
Cu
2+
>
Ca
2+
>
Mg
2+. Both humic acid (HA) and fulvic acid (FA) markedly suppressed the degradation of propranolol. Moreover, the iron in Fe(III)–citrate system was reused by a simple addition of citrate to the reaction solution. By GC–MS analysis, the photoproducts of the propranolol were identified and the degradation pathway was proposed. This work suggests that Fe(III)–citrate complexes are good alternative for the advanced treatment of organic pollutants at neutral pH in aqueous solution.]]></description><subject>Applied sciences</subject><subject>aqueous solutions</subject><subject>Chemical engineering</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Citrates</subject><subject>Citrates - chemistry</subject><subject>Exact sciences and technology</subject><subject>Fe(III)–citrate system</subject><subject>Ferric Compounds - chemistry</subject><subject>fulvic acids</subject><subject>gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Hazardous materials</subject><subject>humic acids</subject><subject>hydrogen peroxide</subject><subject>Hydrogen-Ion Concentration</subject><subject>iron</subject><subject>Kinetics</subject><subject>mass spectrometry</subject><subject>Media</subject><subject>metal ions</subject><subject>Neutral pH</subject><subject>oxygen</subject><subject>Photochemistry</subject><subject>Photodegradation</subject><subject>photolysis</subject><subject>pollutants</subject><subject>Pollution</subject><subject>Propranolol</subject><subject>Propranolol - chemistry</subject><subject>Reactive Oxygen Species - chemistry</subject><subject>Reactors</subject><subject>Simulation</subject><subject>solar radiation</subject><subject>Stability</subject><subject>Sunlight</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0sFuFCEYwHFiNHatPoI6F2NN3BEGGMCLMY3VjU000Z4Jw3x02czAFmYb68l38A19Epnsqjd74vKDD-Y_CD0muCaYtK829WZtvo9mqhtMSI1FjSW5gxZECrqklLZ30QJTzJZUKnaEHuS8wRgTwdl9dNQQ2UrCxQLtPq_jFHu4TKY3k4-hiq7aprhNJsQhDlV3U53ByWq1evHrx0_rp2QmqGwctwN8g_y6-ugDTN7ml9UIdm2Cz2NlQl-Bc2Cn-TQI1z7FMEKYzFBU781DdM-ZIcOjw3qMLs7efT39sDz_9H51-vZ8aZmk07LtTGMYA-VEg4EpzqwwVDjVOOd61VuJue1a4ZxsBVe8ay1pOeMNCEx5ocfo-f7c8qKrHeRJjz5bGAYTIO6yVrihgpNG3CqlkpKqlqsiT_4riZiHS9ngQvme2hRzTuD0NvnRpBtNsJ4r6o0-VNRzRY2FLhXLvieHEbuufK-_u_5kK-DZAZhszeBKLOvzP8cEloy2xT3dO2eiNpepmIsvZRIvf4JiQs2vebMXUDJce0g6Ww_Blkqp9NN99Ldc9jfFUsfs</recordid><startdate>20111030</startdate><enddate>20111030</enddate><creator>Chen, Yong</creator><creator>Liu, Zizheng</creator><creator>Wang, Zongping</creator><creator>Xue, Miaomiao</creator><creator>Zhu, Xianchen</creator><creator>Tao, Tao</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20111030</creationdate><title>Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media</title><author>Chen, Yong ; Liu, Zizheng ; Wang, Zongping ; Xue, Miaomiao ; Zhu, Xianchen ; Tao, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-6ba2a44e9f720e4954c7a37f92fffd9dc805cb67ff867595b6c165452e70357a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>aqueous solutions</topic><topic>Chemical engineering</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Citrates</topic><topic>Citrates - chemistry</topic><topic>Exact sciences and technology</topic><topic>Fe(III)–citrate system</topic><topic>Ferric Compounds - chemistry</topic><topic>fulvic acids</topic><topic>gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Hazardous materials</topic><topic>humic acids</topic><topic>hydrogen peroxide</topic><topic>Hydrogen-Ion Concentration</topic><topic>iron</topic><topic>Kinetics</topic><topic>mass spectrometry</topic><topic>Media</topic><topic>metal ions</topic><topic>Neutral pH</topic><topic>oxygen</topic><topic>Photochemistry</topic><topic>Photodegradation</topic><topic>photolysis</topic><topic>pollutants</topic><topic>Pollution</topic><topic>Propranolol</topic><topic>Propranolol - chemistry</topic><topic>Reactive Oxygen Species - chemistry</topic><topic>Reactors</topic><topic>Simulation</topic><topic>solar radiation</topic><topic>Stability</topic><topic>Sunlight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Liu, Zizheng</creatorcontrib><creatorcontrib>Wang, Zongping</creatorcontrib><creatorcontrib>Xue, Miaomiao</creatorcontrib><creatorcontrib>Zhu, Xianchen</creatorcontrib><creatorcontrib>Tao, Tao</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yong</au><au>Liu, Zizheng</au><au>Wang, Zongping</au><au>Xue, Miaomiao</au><au>Zhu, Xianchen</au><au>Tao, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-10-30</date><risdate>2011</risdate><volume>194</volume><spage>202</spage><epage>208</epage><pages>202-208</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract><![CDATA[► The relationship between the Fe(III)-to-cit ratio and pH-dependent
OH production is investigated. ► The generation rate of
OH increased in the order of pH 9.0
<
3.0
<
7.0
<
4.0
<
5.0 at Fe(III)-to-cit ratio of 10:150. ► The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn
2+
>
Cu
2+
>
Ca
2+
>
Mg
2+. ► Iron in the Fe(III)–cit system is reused to decrease the process cost and colourity of water.
Photogeneration of HO
was optimized in Fe(III)–citrate solution within the pH range of 3.0–9.0 to investigate its photoreactivity at neutral pH without the addition of H
2O
2 under simulated sunlight. The generation of HO
decreased with increasing pH within the range of 6.0–9.0 at the Fe(III)-to-citrate ratio of 10:50 (10
−6
M). However, when the concentration of citrate increased to 1.5
×
10
−4
M, the formation rate of HO
increased in the order of pH 9.0
<
3.0
<
7.0
<
4.0
<
5.0. The pH-dependent HO
production was governed by the stability of Fe(II)/Fe(II)–citrate and the amount of O
2
− in the solution. Propranolol can be efficiently photodegraded in Fe(III)–citrate system at pH 7.0 with pseudo-first-order constant 3.1
×
10
−4
s
−1. HO
was verified to be the main reactive oxygen species (ROS) responsible for the photodegradation of propranolol. The presence of metal ions inhibited the Fe(III)–cit-induced photodegradation in the order of Mn
2+
>
Cu
2+
>
Ca
2+
>
Mg
2+. Both humic acid (HA) and fulvic acid (FA) markedly suppressed the degradation of propranolol. Moreover, the iron in Fe(III)–citrate system was reused by a simple addition of citrate to the reaction solution. By GC–MS analysis, the photoproducts of the propranolol were identified and the degradation pathway was proposed. This work suggests that Fe(III)–citrate complexes are good alternative for the advanced treatment of organic pollutants at neutral pH in aqueous solution.]]></abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21868157</pmid><doi>10.1016/j.jhazmat.2011.07.081</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2011-10, Vol.194, p.202-208 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_902375127 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Applied sciences aqueous solutions Chemical engineering Chromatography, High Pressure Liquid Citrates Citrates - chemistry Exact sciences and technology Fe(III)–citrate system Ferric Compounds - chemistry fulvic acids gas chromatography Gas Chromatography-Mass Spectrometry Hazardous materials humic acids hydrogen peroxide Hydrogen-Ion Concentration iron Kinetics mass spectrometry Media metal ions Neutral pH oxygen Photochemistry Photodegradation photolysis pollutants Pollution Propranolol Propranolol - chemistry Reactive Oxygen Species - chemistry Reactors Simulation solar radiation Stability Sunlight |
title | Photodegradation of propranolol by Fe(III)–citrate complexes: Kinetics, mechanism and effect of environmental media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T06%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodegradation%20of%20propranolol%20by%20Fe(III)%E2%80%93citrate%20complexes:%20Kinetics,%20mechanism%20and%20effect%20of%20environmental%20media&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Chen,%20Yong&rft.date=2011-10-30&rft.volume=194&rft.spage=202&rft.epage=208&rft.pages=202-208&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2011.07.081&rft_dat=%3Cproquest_cross%3E898839659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770358820&rft_id=info:pmid/21868157&rft_els_id=S0304389411009629&rfr_iscdi=true |