Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition

Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0–100 mM) or CaCl 2 (0.1–1.0 mM). The experimental breakthrough curves and retention p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2011-11, Vol.45 (18), p.5905-5915
Hauptverfasser: Wang, Dengjun, Paradelo, Marcos, Bradford, Scott A., Peijnenburg, Willie J.G.M., Chu, Lingyang, Zhou, Dongmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5915
container_issue 18
container_start_page 5905
container_title Water research (Oxford)
container_volume 45
creator Wang, Dengjun
Paradelo, Marcos
Bradford, Scott A.
Peijnenburg, Willie J.G.M.
Chu, Lingyang
Zhou, Dongmei
description Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0–100 mM) or CaCl 2 (0.1–1.0 mM). The experimental breakthrough curves and retention profiles of nHAP were well described using a mathematical model that accounted for two kinetic retention sites. The retention coefficients for both sites increased with the ionic strength (IS) of a particular salt. However, the amount of nHAP retention was more sensitive to increases in the concentration of divalent Ca 2+ than monovalent Na +. The effluent concentration of Cu that was associated with nHAP decreased significantly from 2.62 to 0.17 mg L −1 when NaCl increased from 0 to 100 mM, and from 1.58 to 0.16 mg L −1 when CaCl 2 increased from 0.1 to 1.0 mM. These trends were due to enhanced retention of nHAP with changes in IS and ionic composition (IC) due to compression of the double layer thickness and reduction of the magnitude of the zeta potentials. Results indicate that the IS and IC had a strong influence on the co-transport behavior of contaminants with nHAP nanoparticles. [Display omitted] ► We model the experimental breakthrough curves and retention profiles of nHAP using a mathematical model that accounted for two kinetic retention sites. ► The retention coefficients for both sites increased with the ionic strength and composition of bulk solution. ► The effluent concentration of Cu that was associated with nHAP decreased with increasing ionic strength and composition of bulk solution.
doi_str_mv 10.1016/j.watres.2011.08.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902370911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135411004891</els_id><sourcerecordid>898841046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2a7109275ffb1fee1f836750abc84adf2c2977ff42f634f90c7b4388a92291ca3</originalsourceid><addsrcrecordid>eNqFkcGOFCEURYnROO3oHxjDxriqEii6ABcmpjOjJpO40TV5TYFDp7ooedSMvfbHpe1Wd7ogLDj38vIOIc85aznj_etdew8le2wF47xlumWSPyArrpVphJT6IVkxJruGd2t5QZ4g7hhjQnTmMbkQ3PRCrtWK_LgGF8dYoPiBlgwTzikXmgLdLPQ-llt6exhy-n6AGUosnk4wpRlyiW70SONEEcqSf8URpuENvQrBu4LHCkzjUmKaaD3RUazjTl9rZeWoS_s5YTw-PyWPAozon53vS_Ll-urz5kNz8-n9x827m8ZJJUsjQHFmhFqHsOXBex5016s1g63TEoYgnDBKhSBF6DsZDHNqKzutwQhhuIPukrw69c45fVs8FruP6Pw4wuTTgtYw0SlmOP8vqY3WkjPZV1KeSJcTYvbBzjnuIR8sZ_boye7syZM9erJM2-qpxl6cP1i2ez_8Cf0WU4GXZwDQwRiqGRfxLycV55Lpyr09cb4u7i76bNFFPzk_xFw12CHFf0_yEx98tcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898841046</pqid></control><display><type>article</type><title>Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Dengjun ; Paradelo, Marcos ; Bradford, Scott A. ; Peijnenburg, Willie J.G.M. ; Chu, Lingyang ; Zhou, Dongmei</creator><creatorcontrib>Wang, Dengjun ; Paradelo, Marcos ; Bradford, Scott A. ; Peijnenburg, Willie J.G.M. ; Chu, Lingyang ; Zhou, Dongmei</creatorcontrib><description>Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0–100 mM) or CaCl 2 (0.1–1.0 mM). The experimental breakthrough curves and retention profiles of nHAP were well described using a mathematical model that accounted for two kinetic retention sites. The retention coefficients for both sites increased with the ionic strength (IS) of a particular salt. However, the amount of nHAP retention was more sensitive to increases in the concentration of divalent Ca 2+ than monovalent Na +. The effluent concentration of Cu that was associated with nHAP decreased significantly from 2.62 to 0.17 mg L −1 when NaCl increased from 0 to 100 mM, and from 1.58 to 0.16 mg L −1 when CaCl 2 increased from 0.1 to 1.0 mM. These trends were due to enhanced retention of nHAP with changes in IS and ionic composition (IC) due to compression of the double layer thickness and reduction of the magnitude of the zeta potentials. Results indicate that the IS and IC had a strong influence on the co-transport behavior of contaminants with nHAP nanoparticles. [Display omitted] ► We model the experimental breakthrough curves and retention profiles of nHAP using a mathematical model that accounted for two kinetic retention sites. ► The retention coefficients for both sites increased with the ionic strength and composition of bulk solution. ► The effluent concentration of Cu that was associated with nHAP decreased with increasing ionic strength and composition of bulk solution.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2011.08.041</identifier><identifier>PMID: 21962457</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Co-transport ; Copper ; Copper - chemistry ; Durapatite - chemistry ; Electrolytes - chemistry ; Exact sciences and technology ; Hydroxyapatite ; Hydroxyapatite nanoparticles (nHAP) ; Integrated circuits ; Ionic composition (IC) ; Ionic strength (IS) ; Kinetics ; MATHEMATICAL ANALYSIS ; Mathematical models ; Motion ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; nHAP-facilitated Cu (nHAP-F Cu) ; Osmolar Concentration ; PARTICLES ; Pollution ; Quartz - chemistry ; Sand ; Silicon Dioxide - chemistry ; SODIUM CHLORIDE ; Solutions ; Strength ; Surface Properties ; Transport ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2011-11, Vol.45 (18), p.5905-5915</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2a7109275ffb1fee1f836750abc84adf2c2977ff42f634f90c7b4388a92291ca3</citedby><cites>FETCH-LOGICAL-c474t-2a7109275ffb1fee1f836750abc84adf2c2977ff42f634f90c7b4388a92291ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2011.08.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24711408$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21962457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dengjun</creatorcontrib><creatorcontrib>Paradelo, Marcos</creatorcontrib><creatorcontrib>Bradford, Scott A.</creatorcontrib><creatorcontrib>Peijnenburg, Willie J.G.M.</creatorcontrib><creatorcontrib>Chu, Lingyang</creatorcontrib><creatorcontrib>Zhou, Dongmei</creatorcontrib><title>Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0–100 mM) or CaCl 2 (0.1–1.0 mM). The experimental breakthrough curves and retention profiles of nHAP were well described using a mathematical model that accounted for two kinetic retention sites. The retention coefficients for both sites increased with the ionic strength (IS) of a particular salt. However, the amount of nHAP retention was more sensitive to increases in the concentration of divalent Ca 2+ than monovalent Na +. The effluent concentration of Cu that was associated with nHAP decreased significantly from 2.62 to 0.17 mg L −1 when NaCl increased from 0 to 100 mM, and from 1.58 to 0.16 mg L −1 when CaCl 2 increased from 0.1 to 1.0 mM. These trends were due to enhanced retention of nHAP with changes in IS and ionic composition (IC) due to compression of the double layer thickness and reduction of the magnitude of the zeta potentials. Results indicate that the IS and IC had a strong influence on the co-transport behavior of contaminants with nHAP nanoparticles. [Display omitted] ► We model the experimental breakthrough curves and retention profiles of nHAP using a mathematical model that accounted for two kinetic retention sites. ► The retention coefficients for both sites increased with the ionic strength and composition of bulk solution. ► The effluent concentration of Cu that was associated with nHAP decreased with increasing ionic strength and composition of bulk solution.</description><subject>Applied sciences</subject><subject>Co-transport</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Durapatite - chemistry</subject><subject>Electrolytes - chemistry</subject><subject>Exact sciences and technology</subject><subject>Hydroxyapatite</subject><subject>Hydroxyapatite nanoparticles (nHAP)</subject><subject>Integrated circuits</subject><subject>Ionic composition (IC)</subject><subject>Ionic strength (IS)</subject><subject>Kinetics</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>Mathematical models</subject><subject>Motion</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>nHAP-facilitated Cu (nHAP-F Cu)</subject><subject>Osmolar Concentration</subject><subject>PARTICLES</subject><subject>Pollution</subject><subject>Quartz - chemistry</subject><subject>Sand</subject><subject>Silicon Dioxide - chemistry</subject><subject>SODIUM CHLORIDE</subject><subject>Solutions</subject><subject>Strength</subject><subject>Surface Properties</subject><subject>Transport</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGOFCEURYnROO3oHxjDxriqEii6ABcmpjOjJpO40TV5TYFDp7ooedSMvfbHpe1Wd7ogLDj38vIOIc85aznj_etdew8le2wF47xlumWSPyArrpVphJT6IVkxJruGd2t5QZ4g7hhjQnTmMbkQ3PRCrtWK_LgGF8dYoPiBlgwTzikXmgLdLPQ-llt6exhy-n6AGUosnk4wpRlyiW70SONEEcqSf8URpuENvQrBu4LHCkzjUmKaaD3RUazjTl9rZeWoS_s5YTw-PyWPAozon53vS_Ll-urz5kNz8-n9x827m8ZJJUsjQHFmhFqHsOXBex5016s1g63TEoYgnDBKhSBF6DsZDHNqKzutwQhhuIPukrw69c45fVs8FruP6Pw4wuTTgtYw0SlmOP8vqY3WkjPZV1KeSJcTYvbBzjnuIR8sZ_boye7syZM9erJM2-qpxl6cP1i2ez_8Cf0WU4GXZwDQwRiqGRfxLycV55Lpyr09cb4u7i76bNFFPzk_xFw12CHFf0_yEx98tcI</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Wang, Dengjun</creator><creator>Paradelo, Marcos</creator><creator>Bradford, Scott A.</creator><creator>Peijnenburg, Willie J.G.M.</creator><creator>Chu, Lingyang</creator><creator>Zhou, Dongmei</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20111115</creationdate><title>Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition</title><author>Wang, Dengjun ; Paradelo, Marcos ; Bradford, Scott A. ; Peijnenburg, Willie J.G.M. ; Chu, Lingyang ; Zhou, Dongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2a7109275ffb1fee1f836750abc84adf2c2977ff42f634f90c7b4388a92291ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Co-transport</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Durapatite - chemistry</topic><topic>Electrolytes - chemistry</topic><topic>Exact sciences and technology</topic><topic>Hydroxyapatite</topic><topic>Hydroxyapatite nanoparticles (nHAP)</topic><topic>Integrated circuits</topic><topic>Ionic composition (IC)</topic><topic>Ionic strength (IS)</topic><topic>Kinetics</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>Mathematical models</topic><topic>Motion</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>nHAP-facilitated Cu (nHAP-F Cu)</topic><topic>Osmolar Concentration</topic><topic>PARTICLES</topic><topic>Pollution</topic><topic>Quartz - chemistry</topic><topic>Sand</topic><topic>Silicon Dioxide - chemistry</topic><topic>SODIUM CHLORIDE</topic><topic>Solutions</topic><topic>Strength</topic><topic>Surface Properties</topic><topic>Transport</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dengjun</creatorcontrib><creatorcontrib>Paradelo, Marcos</creatorcontrib><creatorcontrib>Bradford, Scott A.</creatorcontrib><creatorcontrib>Peijnenburg, Willie J.G.M.</creatorcontrib><creatorcontrib>Chu, Lingyang</creatorcontrib><creatorcontrib>Zhou, Dongmei</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dengjun</au><au>Paradelo, Marcos</au><au>Bradford, Scott A.</au><au>Peijnenburg, Willie J.G.M.</au><au>Chu, Lingyang</au><au>Zhou, Dongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2011-11-15</date><risdate>2011</risdate><volume>45</volume><issue>18</issue><spage>5905</spage><epage>5915</epage><pages>5905-5915</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0–100 mM) or CaCl 2 (0.1–1.0 mM). The experimental breakthrough curves and retention profiles of nHAP were well described using a mathematical model that accounted for two kinetic retention sites. The retention coefficients for both sites increased with the ionic strength (IS) of a particular salt. However, the amount of nHAP retention was more sensitive to increases in the concentration of divalent Ca 2+ than monovalent Na +. The effluent concentration of Cu that was associated with nHAP decreased significantly from 2.62 to 0.17 mg L −1 when NaCl increased from 0 to 100 mM, and from 1.58 to 0.16 mg L −1 when CaCl 2 increased from 0.1 to 1.0 mM. These trends were due to enhanced retention of nHAP with changes in IS and ionic composition (IC) due to compression of the double layer thickness and reduction of the magnitude of the zeta potentials. Results indicate that the IS and IC had a strong influence on the co-transport behavior of contaminants with nHAP nanoparticles. [Display omitted] ► We model the experimental breakthrough curves and retention profiles of nHAP using a mathematical model that accounted for two kinetic retention sites. ► The retention coefficients for both sites increased with the ionic strength and composition of bulk solution. ► The effluent concentration of Cu that was associated with nHAP decreased with increasing ionic strength and composition of bulk solution.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21962457</pmid><doi>10.1016/j.watres.2011.08.041</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2011-11, Vol.45 (18), p.5905-5915
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_902370911
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Applied sciences
Co-transport
Copper
Copper - chemistry
Durapatite - chemistry
Electrolytes - chemistry
Exact sciences and technology
Hydroxyapatite
Hydroxyapatite nanoparticles (nHAP)
Integrated circuits
Ionic composition (IC)
Ionic strength (IS)
Kinetics
MATHEMATICAL ANALYSIS
Mathematical models
Motion
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
nHAP-facilitated Cu (nHAP-F Cu)
Osmolar Concentration
PARTICLES
Pollution
Quartz - chemistry
Sand
Silicon Dioxide - chemistry
SODIUM CHLORIDE
Solutions
Strength
Surface Properties
Transport
Water treatment and pollution
title Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facilitated%20transport%20of%20Cu%20with%20hydroxyapatite%20nanoparticles%20in%20saturated%20sand:%20Effects%20of%20solution%20ionic%20strength%20and%20composition&rft.jtitle=Water%20research%20(Oxford)&rft.au=Wang,%20Dengjun&rft.date=2011-11-15&rft.volume=45&rft.issue=18&rft.spage=5905&rft.epage=5915&rft.pages=5905-5915&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2011.08.041&rft_dat=%3Cproquest_cross%3E898841046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=898841046&rft_id=info:pmid/21962457&rft_els_id=S0043135411004891&rfr_iscdi=true