Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function
Abstract Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily imp...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2011-12, Vol.32 (34), p.8915-8926 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8926 |
---|---|
container_issue | 34 |
container_start_page | 8915 |
container_title | Biomaterials |
container_volume | 32 |
creator | Marelli, Benedetto Ghezzi, Chiara E Mohn, Dirk Stark, Wendelin J Barralet, Jake E Boccaccini, Aldo R Nazhat, Showan N |
description | Abstract Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy. |
doi_str_mv | 10.1016/j.biomaterials.2011.08.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902368100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961211009215</els_id><sourcerecordid>902368100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-4188239d3407e13b822d590218bb53d300e80943fc0ccddb5cb90de2a3f545103</originalsourceid><addsrcrecordid>eNqNUsuO1DAQtBCIHRZ-AVlcOCX4kWQcDkirXV7SShyAs-XY7cGDx17cyUrDR_DNOJoFIS5wsq2urnJXNSHPOGs548OLfTuFfDAzlGAitoJx3jLV1tI9suFqq5p-ZP19smG8E804cHFGHiHuWX2zTjwkZ4IrNW7HYUN-XFgLEUplc_QQUr3F8N3MISeaPXWQEKjNMZodpCaZlGkVN3YOt0B30SDSL8epBEd3EJGGZAsYBKRojfc5Oopz8D5BBZrkaIHdEqsY0owz5KkyzMFSvyS7aj4mD3ydCZ7cnefk85vXny7fNdcf3r6_vLhubDcMc9PV_ws5OtmxLXA5KSFcnbmONU29dJIxUGzspLfMWuem3k4jcyCM9H3XcybPyfMT703J3xbAWR8CViOiSZAX1JVLDoqzfyPV2KteDHKoyJcnpC0ZsYDXNyUcTDlqzvQanN7rP4PTa3CaKV1LtfnpncwyHcD9bv2VVAVcnQDVZrgNUDTaAMmCCwXsrF0O_6fz6i8aG0MK1sSvcATc56WktYdrFJrpj-sKrRvEqxej4L38CVWpyME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>895852636</pqid></control><display><type>article</type><title>Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Marelli, Benedetto ; Ghezzi, Chiara E ; Mohn, Dirk ; Stark, Wendelin J ; Barralet, Jake E ; Boccaccini, Aldo R ; Nazhat, Showan N</creator><creatorcontrib>Marelli, Benedetto ; Ghezzi, Chiara E ; Mohn, Dirk ; Stark, Wendelin J ; Barralet, Jake E ; Boccaccini, Aldo R ; Nazhat, Showan N</creatorcontrib><description>Abstract Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2011.08.016</identifier><identifier>PMID: 21889796</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Alkaline Phosphatase - metabolism ; Animals ; Calcification, Physiologic ; Cell Line ; Cell Survival ; Ceramics - chemistry ; Ceramics - metabolism ; Collagen - chemistry ; Collagen - metabolism ; Compressive Strength ; Dense collagen scaffolds ; Dentistry ; Durapatite - metabolism ; Gels - chemistry ; Gels - metabolism ; Hydroxyapatite ; Mice ; Mineralization ; Nano-bioactive glass ; Nanocomposite hydrogels ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2011-12, Vol.32 (34), p.8915-8926</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-4188239d3407e13b822d590218bb53d300e80943fc0ccddb5cb90de2a3f545103</citedby><cites>FETCH-LOGICAL-c466t-4188239d3407e13b822d590218bb53d300e80943fc0ccddb5cb90de2a3f545103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961211009215$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21889796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marelli, Benedetto</creatorcontrib><creatorcontrib>Ghezzi, Chiara E</creatorcontrib><creatorcontrib>Mohn, Dirk</creatorcontrib><creatorcontrib>Stark, Wendelin J</creatorcontrib><creatorcontrib>Barralet, Jake E</creatorcontrib><creatorcontrib>Boccaccini, Aldo R</creatorcontrib><creatorcontrib>Nazhat, Showan N</creatorcontrib><title>Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.</description><subject>Advanced Basic Science</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Calcification, Physiologic</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Ceramics - chemistry</subject><subject>Ceramics - metabolism</subject><subject>Collagen - chemistry</subject><subject>Collagen - metabolism</subject><subject>Compressive Strength</subject><subject>Dense collagen scaffolds</subject><subject>Dentistry</subject><subject>Durapatite - metabolism</subject><subject>Gels - chemistry</subject><subject>Gels - metabolism</subject><subject>Hydroxyapatite</subject><subject>Mice</subject><subject>Mineralization</subject><subject>Nano-bioactive glass</subject><subject>Nanocomposite hydrogels</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUsuO1DAQtBCIHRZ-AVlcOCX4kWQcDkirXV7SShyAs-XY7cGDx17cyUrDR_DNOJoFIS5wsq2urnJXNSHPOGs548OLfTuFfDAzlGAitoJx3jLV1tI9suFqq5p-ZP19smG8E804cHFGHiHuWX2zTjwkZ4IrNW7HYUN-XFgLEUplc_QQUr3F8N3MISeaPXWQEKjNMZodpCaZlGkVN3YOt0B30SDSL8epBEd3EJGGZAsYBKRojfc5Oopz8D5BBZrkaIHdEqsY0owz5KkyzMFSvyS7aj4mD3ydCZ7cnefk85vXny7fNdcf3r6_vLhubDcMc9PV_ws5OtmxLXA5KSFcnbmONU29dJIxUGzspLfMWuem3k4jcyCM9H3XcybPyfMT703J3xbAWR8CViOiSZAX1JVLDoqzfyPV2KteDHKoyJcnpC0ZsYDXNyUcTDlqzvQanN7rP4PTa3CaKV1LtfnpncwyHcD9bv2VVAVcnQDVZrgNUDTaAMmCCwXsrF0O_6fz6i8aG0MK1sSvcATc56WktYdrFJrpj-sKrRvEqxej4L38CVWpyME</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Marelli, Benedetto</creator><creator>Ghezzi, Chiara E</creator><creator>Mohn, Dirk</creator><creator>Stark, Wendelin J</creator><creator>Barralet, Jake E</creator><creator>Boccaccini, Aldo R</creator><creator>Nazhat, Showan N</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20111201</creationdate><title>Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function</title><author>Marelli, Benedetto ; Ghezzi, Chiara E ; Mohn, Dirk ; Stark, Wendelin J ; Barralet, Jake E ; Boccaccini, Aldo R ; Nazhat, Showan N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-4188239d3407e13b822d590218bb53d300e80943fc0ccddb5cb90de2a3f545103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Calcification, Physiologic</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Ceramics - chemistry</topic><topic>Ceramics - metabolism</topic><topic>Collagen - chemistry</topic><topic>Collagen - metabolism</topic><topic>Compressive Strength</topic><topic>Dense collagen scaffolds</topic><topic>Dentistry</topic><topic>Durapatite - metabolism</topic><topic>Gels - chemistry</topic><topic>Gels - metabolism</topic><topic>Hydroxyapatite</topic><topic>Mice</topic><topic>Mineralization</topic><topic>Nano-bioactive glass</topic><topic>Nanocomposite hydrogels</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marelli, Benedetto</creatorcontrib><creatorcontrib>Ghezzi, Chiara E</creatorcontrib><creatorcontrib>Mohn, Dirk</creatorcontrib><creatorcontrib>Stark, Wendelin J</creatorcontrib><creatorcontrib>Barralet, Jake E</creatorcontrib><creatorcontrib>Boccaccini, Aldo R</creatorcontrib><creatorcontrib>Nazhat, Showan N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marelli, Benedetto</au><au>Ghezzi, Chiara E</au><au>Mohn, Dirk</au><au>Stark, Wendelin J</au><au>Barralet, Jake E</au><au>Boccaccini, Aldo R</au><au>Nazhat, Showan N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>32</volume><issue>34</issue><spage>8915</spage><epage>8926</epage><pages>8915-8926</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21889796</pmid><doi>10.1016/j.biomaterials.2011.08.016</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2011-12, Vol.32 (34), p.8915-8926 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_902368100 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Alkaline Phosphatase - metabolism Animals Calcification, Physiologic Cell Line Cell Survival Ceramics - chemistry Ceramics - metabolism Collagen - chemistry Collagen - metabolism Compressive Strength Dense collagen scaffolds Dentistry Durapatite - metabolism Gels - chemistry Gels - metabolism Hydroxyapatite Mice Mineralization Nano-bioactive glass Nanocomposite hydrogels Osteoblasts - cytology Osteoblasts - metabolism Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20mineralization%20of%20dense%20collagen-nano%20bioactive%20glass%20hybrid%20gels%20increases%20scaffold%20stiffness%20and%20regulates%20osteoblastic%20function&rft.jtitle=Biomaterials&rft.au=Marelli,%20Benedetto&rft.date=2011-12-01&rft.volume=32&rft.issue=34&rft.spage=8915&rft.epage=8926&rft.pages=8915-8926&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2011.08.016&rft_dat=%3Cproquest_cross%3E902368100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=895852636&rft_id=info:pmid/21889796&rft_els_id=1_s2_0_S0142961211009215&rfr_iscdi=true |