Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function

Abstract Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2011-12, Vol.32 (34), p.8915-8926
Hauptverfasser: Marelli, Benedetto, Ghezzi, Chiara E, Mohn, Dirk, Stark, Wendelin J, Barralet, Jake E, Boccaccini, Aldo R, Nazhat, Showan N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8926
container_issue 34
container_start_page 8915
container_title Biomaterials
container_volume 32
creator Marelli, Benedetto
Ghezzi, Chiara E
Mohn, Dirk
Stark, Wendelin J
Barralet, Jake E
Boccaccini, Aldo R
Nazhat, Showan N
description Abstract Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.
doi_str_mv 10.1016/j.biomaterials.2011.08.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902368100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961211009215</els_id><sourcerecordid>902368100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-4188239d3407e13b822d590218bb53d300e80943fc0ccddb5cb90de2a3f545103</originalsourceid><addsrcrecordid>eNqNUsuO1DAQtBCIHRZ-AVlcOCX4kWQcDkirXV7SShyAs-XY7cGDx17cyUrDR_DNOJoFIS5wsq2urnJXNSHPOGs548OLfTuFfDAzlGAitoJx3jLV1tI9suFqq5p-ZP19smG8E804cHFGHiHuWX2zTjwkZ4IrNW7HYUN-XFgLEUplc_QQUr3F8N3MISeaPXWQEKjNMZodpCaZlGkVN3YOt0B30SDSL8epBEd3EJGGZAsYBKRojfc5Oopz8D5BBZrkaIHdEqsY0owz5KkyzMFSvyS7aj4mD3ydCZ7cnefk85vXny7fNdcf3r6_vLhubDcMc9PV_ws5OtmxLXA5KSFcnbmONU29dJIxUGzspLfMWuem3k4jcyCM9H3XcybPyfMT703J3xbAWR8CViOiSZAX1JVLDoqzfyPV2KteDHKoyJcnpC0ZsYDXNyUcTDlqzvQanN7rP4PTa3CaKV1LtfnpncwyHcD9bv2VVAVcnQDVZrgNUDTaAMmCCwXsrF0O_6fz6i8aG0MK1sSvcATc56WktYdrFJrpj-sKrRvEqxej4L38CVWpyME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>895852636</pqid></control><display><type>article</type><title>Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Marelli, Benedetto ; Ghezzi, Chiara E ; Mohn, Dirk ; Stark, Wendelin J ; Barralet, Jake E ; Boccaccini, Aldo R ; Nazhat, Showan N</creator><creatorcontrib>Marelli, Benedetto ; Ghezzi, Chiara E ; Mohn, Dirk ; Stark, Wendelin J ; Barralet, Jake E ; Boccaccini, Aldo R ; Nazhat, Showan N</creatorcontrib><description>Abstract Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2011.08.016</identifier><identifier>PMID: 21889796</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Alkaline Phosphatase - metabolism ; Animals ; Calcification, Physiologic ; Cell Line ; Cell Survival ; Ceramics - chemistry ; Ceramics - metabolism ; Collagen - chemistry ; Collagen - metabolism ; Compressive Strength ; Dense collagen scaffolds ; Dentistry ; Durapatite - metabolism ; Gels - chemistry ; Gels - metabolism ; Hydroxyapatite ; Mice ; Mineralization ; Nano-bioactive glass ; Nanocomposite hydrogels ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2011-12, Vol.32 (34), p.8915-8926</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-4188239d3407e13b822d590218bb53d300e80943fc0ccddb5cb90de2a3f545103</citedby><cites>FETCH-LOGICAL-c466t-4188239d3407e13b822d590218bb53d300e80943fc0ccddb5cb90de2a3f545103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961211009215$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21889796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marelli, Benedetto</creatorcontrib><creatorcontrib>Ghezzi, Chiara E</creatorcontrib><creatorcontrib>Mohn, Dirk</creatorcontrib><creatorcontrib>Stark, Wendelin J</creatorcontrib><creatorcontrib>Barralet, Jake E</creatorcontrib><creatorcontrib>Boccaccini, Aldo R</creatorcontrib><creatorcontrib>Nazhat, Showan N</creatorcontrib><title>Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.</description><subject>Advanced Basic Science</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Calcification, Physiologic</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Ceramics - chemistry</subject><subject>Ceramics - metabolism</subject><subject>Collagen - chemistry</subject><subject>Collagen - metabolism</subject><subject>Compressive Strength</subject><subject>Dense collagen scaffolds</subject><subject>Dentistry</subject><subject>Durapatite - metabolism</subject><subject>Gels - chemistry</subject><subject>Gels - metabolism</subject><subject>Hydroxyapatite</subject><subject>Mice</subject><subject>Mineralization</subject><subject>Nano-bioactive glass</subject><subject>Nanocomposite hydrogels</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUsuO1DAQtBCIHRZ-AVlcOCX4kWQcDkirXV7SShyAs-XY7cGDx17cyUrDR_DNOJoFIS5wsq2urnJXNSHPOGs548OLfTuFfDAzlGAitoJx3jLV1tI9suFqq5p-ZP19smG8E804cHFGHiHuWX2zTjwkZ4IrNW7HYUN-XFgLEUplc_QQUr3F8N3MISeaPXWQEKjNMZodpCaZlGkVN3YOt0B30SDSL8epBEd3EJGGZAsYBKRojfc5Oopz8D5BBZrkaIHdEqsY0owz5KkyzMFSvyS7aj4mD3ydCZ7cnefk85vXny7fNdcf3r6_vLhubDcMc9PV_ws5OtmxLXA5KSFcnbmONU29dJIxUGzspLfMWuem3k4jcyCM9H3XcybPyfMT703J3xbAWR8CViOiSZAX1JVLDoqzfyPV2KteDHKoyJcnpC0ZsYDXNyUcTDlqzvQanN7rP4PTa3CaKV1LtfnpncwyHcD9bv2VVAVcnQDVZrgNUDTaAMmCCwXsrF0O_6fz6i8aG0MK1sSvcATc56WktYdrFJrpj-sKrRvEqxej4L38CVWpyME</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Marelli, Benedetto</creator><creator>Ghezzi, Chiara E</creator><creator>Mohn, Dirk</creator><creator>Stark, Wendelin J</creator><creator>Barralet, Jake E</creator><creator>Boccaccini, Aldo R</creator><creator>Nazhat, Showan N</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20111201</creationdate><title>Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function</title><author>Marelli, Benedetto ; Ghezzi, Chiara E ; Mohn, Dirk ; Stark, Wendelin J ; Barralet, Jake E ; Boccaccini, Aldo R ; Nazhat, Showan N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-4188239d3407e13b822d590218bb53d300e80943fc0ccddb5cb90de2a3f545103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Calcification, Physiologic</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Ceramics - chemistry</topic><topic>Ceramics - metabolism</topic><topic>Collagen - chemistry</topic><topic>Collagen - metabolism</topic><topic>Compressive Strength</topic><topic>Dense collagen scaffolds</topic><topic>Dentistry</topic><topic>Durapatite - metabolism</topic><topic>Gels - chemistry</topic><topic>Gels - metabolism</topic><topic>Hydroxyapatite</topic><topic>Mice</topic><topic>Mineralization</topic><topic>Nano-bioactive glass</topic><topic>Nanocomposite hydrogels</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marelli, Benedetto</creatorcontrib><creatorcontrib>Ghezzi, Chiara E</creatorcontrib><creatorcontrib>Mohn, Dirk</creatorcontrib><creatorcontrib>Stark, Wendelin J</creatorcontrib><creatorcontrib>Barralet, Jake E</creatorcontrib><creatorcontrib>Boccaccini, Aldo R</creatorcontrib><creatorcontrib>Nazhat, Showan N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marelli, Benedetto</au><au>Ghezzi, Chiara E</au><au>Mohn, Dirk</au><au>Stark, Wendelin J</au><au>Barralet, Jake E</au><au>Boccaccini, Aldo R</au><au>Nazhat, Showan N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>32</volume><issue>34</issue><spage>8915</spage><epage>8926</epage><pages>8915-8926</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21889796</pmid><doi>10.1016/j.biomaterials.2011.08.016</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2011-12, Vol.32 (34), p.8915-8926
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_902368100
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Alkaline Phosphatase - metabolism
Animals
Calcification, Physiologic
Cell Line
Cell Survival
Ceramics - chemistry
Ceramics - metabolism
Collagen - chemistry
Collagen - metabolism
Compressive Strength
Dense collagen scaffolds
Dentistry
Durapatite - metabolism
Gels - chemistry
Gels - metabolism
Hydroxyapatite
Mice
Mineralization
Nano-bioactive glass
Nanocomposite hydrogels
Osteoblasts - cytology
Osteoblasts - metabolism
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20mineralization%20of%20dense%20collagen-nano%20bioactive%20glass%20hybrid%20gels%20increases%20scaffold%20stiffness%20and%20regulates%20osteoblastic%20function&rft.jtitle=Biomaterials&rft.au=Marelli,%20Benedetto&rft.date=2011-12-01&rft.volume=32&rft.issue=34&rft.spage=8915&rft.epage=8926&rft.pages=8915-8926&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2011.08.016&rft_dat=%3Cproquest_cross%3E902368100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=895852636&rft_id=info:pmid/21889796&rft_els_id=1_s2_0_S0142961211009215&rfr_iscdi=true