Bacterial symbiosis forming laminated iron-rich deposits in Okuoku-hachikurou hot spring, Akita Prefecture, Japan

Banded iron formations are the most characteristic of Archean–Paleoproterozoic sediment records. Laminated textures resembling banded iron formations can be observed in modern hot‐spring environments. Using sedimentological and microbiological techniques, we investigated the processes of laminar for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The island arc 2011-06, Vol.20 (2), p.294-304
Hauptverfasser: TAKASHIMA, CHIZURU, OKUMURA, TOMOYO, NISHIDA, SHIN, KOIKE, HIROKO, KANO, AKIHIRO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 2
container_start_page 294
container_title The island arc
container_volume 20
creator TAKASHIMA, CHIZURU
OKUMURA, TOMOYO
NISHIDA, SHIN
KOIKE, HIROKO
KANO, AKIHIRO
description Banded iron formations are the most characteristic of Archean–Paleoproterozoic sediment records. Laminated textures resembling banded iron formations can be observed in modern hot‐spring environments. Using sedimentological and microbiological techniques, we investigated the processes of laminar formation and considered the origin of lamination textures. An iron‐rich deposit at the Okuoku‐hachikurou hot spring in Japan exhibits sub‐millimeter laminations consisting of bacteria‐induced ferrihydrite and aragonite. The ferrihydrite particles are spherical and exhibit fine lamination, up to 100 µm thick in ferrihydrite‐rich parts. In aragonite‐rich parts, ferrihydrite particles form filamentous textures with diameters of 10–30 µm, but not laminations. Textural analysis using scanning electron microscopy and phylotype analysis using 16S rRNA indicated the bacterial contribution to ferrihydrite precipitation. A sheath‐like fabric showing a meshwork of nanometer‐order organic filaments, and sheath‐forming bacteria were observed in the deposit specimen etched by citric acid. Phylotype analysis detected in the iron‐rich deposits some bacterial types related to cyanobacteria, purple bacteria, and iron‐oxidizing bacteria. Iron‐oxidizing bacteria probably were responsible for precipitation of the ferrihydrite. Chemolithoautotrophic iron‐oxidizing bacteria are microaerophilic and thrive on Fe(II) in a redox gradient, but dissolved oxygen was not detected in the Okuoku‐hachikurou hot spring. Thus, a certain supply of oxygen is needed for metabolism of the microaerophilic iron‐oxidizing bacteria. The distribution of photosynthetic pigments in the iron‐rich parts indicates that the most likely source of oxygen is photosynthesis by cyanobacteria. This symbiotic relationship between cyanobacteria and iron‐oxidizing bacteria can explain the laminated texture of iron‐rich deposits in the Okuoku‐hachikurou hot spring. These laminations may reflect changes in photosynthetic intensity. There is presently some debate about the bacterial groups that may have played roles in precipitation of banded iron formations. This study presents a new bacterial model for iron precipitation and may provide a mechanism for sub‐millimeter laminations in banded iron formations deposited in shallow water.
doi_str_mv 10.1111/j.1440-1738.2011.00768.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902365820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460652183</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4998-3d85f17afa251c30ba8d5e308fa65fb2c890902c96f721c6a3416fe87bb87aa33</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhqMKpJbCf7DEgUsT7DixHYnLsoJ-qNCCqHocTbw260023tqJ2P33OCzqgRNzmZHnfUaeebOMMFqwFO83BasqmjPJVVFSxgpKpVDF_iQ7e268SDXlKq-UZKfZqxg3lKb3RpxlTx9RjyY47Ek8bFvno4vE-rB1w0_SY0o4mhVxwQ95cHpNVmaXNGMkbiB33eS7KV-jXrtuCn4iaz-SuAsJviCLzo1I7oOxRo9TMBfkBnc4vM5eWuyjefM3n2cPnz_9WF7lt3eX18vFbY5V06icr1RtmUSLZc00py2qVW04VRZFbdtSq4Y2tNSNsLJkWiCvmLBGybZVEpHz8-zdce4u-KfJxBG2LmrT9zgYP0VIMBe1KmlSvv1HufFTGNLnoKwEFXXJ1DxPHVU6-BjTVpD23GI4AKMwWwEbmC8O88VhtgL-WAH7hH44or9cbw7_zcH14nsqEp4fcRdHs3_GMXQgJJc1PH69hJvl_ZViXzh8478BQwyfEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460652183</pqid></control><display><type>article</type><title>Bacterial symbiosis forming laminated iron-rich deposits in Okuoku-hachikurou hot spring, Akita Prefecture, Japan</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>TAKASHIMA, CHIZURU ; OKUMURA, TOMOYO ; NISHIDA, SHIN ; KOIKE, HIROKO ; KANO, AKIHIRO</creator><creatorcontrib>TAKASHIMA, CHIZURU ; OKUMURA, TOMOYO ; NISHIDA, SHIN ; KOIKE, HIROKO ; KANO, AKIHIRO</creatorcontrib><description>Banded iron formations are the most characteristic of Archean–Paleoproterozoic sediment records. Laminated textures resembling banded iron formations can be observed in modern hot‐spring environments. Using sedimentological and microbiological techniques, we investigated the processes of laminar formation and considered the origin of lamination textures. An iron‐rich deposit at the Okuoku‐hachikurou hot spring in Japan exhibits sub‐millimeter laminations consisting of bacteria‐induced ferrihydrite and aragonite. The ferrihydrite particles are spherical and exhibit fine lamination, up to 100 µm thick in ferrihydrite‐rich parts. In aragonite‐rich parts, ferrihydrite particles form filamentous textures with diameters of 10–30 µm, but not laminations. Textural analysis using scanning electron microscopy and phylotype analysis using 16S rRNA indicated the bacterial contribution to ferrihydrite precipitation. A sheath‐like fabric showing a meshwork of nanometer‐order organic filaments, and sheath‐forming bacteria were observed in the deposit specimen etched by citric acid. Phylotype analysis detected in the iron‐rich deposits some bacterial types related to cyanobacteria, purple bacteria, and iron‐oxidizing bacteria. Iron‐oxidizing bacteria probably were responsible for precipitation of the ferrihydrite. Chemolithoautotrophic iron‐oxidizing bacteria are microaerophilic and thrive on Fe(II) in a redox gradient, but dissolved oxygen was not detected in the Okuoku‐hachikurou hot spring. Thus, a certain supply of oxygen is needed for metabolism of the microaerophilic iron‐oxidizing bacteria. The distribution of photosynthetic pigments in the iron‐rich parts indicates that the most likely source of oxygen is photosynthesis by cyanobacteria. This symbiotic relationship between cyanobacteria and iron‐oxidizing bacteria can explain the laminated texture of iron‐rich deposits in the Okuoku‐hachikurou hot spring. These laminations may reflect changes in photosynthetic intensity. There is presently some debate about the bacterial groups that may have played roles in precipitation of banded iron formations. This study presents a new bacterial model for iron precipitation and may provide a mechanism for sub‐millimeter laminations in banded iron formations deposited in shallow water.</description><identifier>ISSN: 1038-4871</identifier><identifier>EISSN: 1440-1738</identifier><identifier>DOI: 10.1111/j.1440-1738.2011.00768.x</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Publishing Asia</publisher><subject>Aragonite ; Bacteria ; banded iron formation ; Chemical precipitation ; Citric acid ; Cyanobacteria ; Deposits ; Dissolved oxygen ; Electron microscopy ; ferrihydrite ; Filaments ; Formations ; Hot springs ; Iron ; iron-oxidizing bacteria ; Lamination ; Metabolism ; Oxidation ; Oxidoreductions ; Oxygen ; Photosynthesis ; Photosynthetic pigments ; Pigments ; rRNA 16S ; Scanning electron microscopy ; Shallow water ; Sheaths ; Spring ; Symbionts ; Symbiosis</subject><ispartof>The island arc, 2011-06, Vol.20 (2), p.294-304</ispartof><rights>2011 Blackwell Publishing Asia Pty Ltd</rights><rights>Copyright Wiley Subscription Services, Inc. Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4998-3d85f17afa251c30ba8d5e308fa65fb2c890902c96f721c6a3416fe87bb87aa33</citedby><cites>FETCH-LOGICAL-a4998-3d85f17afa251c30ba8d5e308fa65fb2c890902c96f721c6a3416fe87bb87aa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1440-1738.2011.00768.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1440-1738.2011.00768.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>TAKASHIMA, CHIZURU</creatorcontrib><creatorcontrib>OKUMURA, TOMOYO</creatorcontrib><creatorcontrib>NISHIDA, SHIN</creatorcontrib><creatorcontrib>KOIKE, HIROKO</creatorcontrib><creatorcontrib>KANO, AKIHIRO</creatorcontrib><title>Bacterial symbiosis forming laminated iron-rich deposits in Okuoku-hachikurou hot spring, Akita Prefecture, Japan</title><title>The island arc</title><description>Banded iron formations are the most characteristic of Archean–Paleoproterozoic sediment records. Laminated textures resembling banded iron formations can be observed in modern hot‐spring environments. Using sedimentological and microbiological techniques, we investigated the processes of laminar formation and considered the origin of lamination textures. An iron‐rich deposit at the Okuoku‐hachikurou hot spring in Japan exhibits sub‐millimeter laminations consisting of bacteria‐induced ferrihydrite and aragonite. The ferrihydrite particles are spherical and exhibit fine lamination, up to 100 µm thick in ferrihydrite‐rich parts. In aragonite‐rich parts, ferrihydrite particles form filamentous textures with diameters of 10–30 µm, but not laminations. Textural analysis using scanning electron microscopy and phylotype analysis using 16S rRNA indicated the bacterial contribution to ferrihydrite precipitation. A sheath‐like fabric showing a meshwork of nanometer‐order organic filaments, and sheath‐forming bacteria were observed in the deposit specimen etched by citric acid. Phylotype analysis detected in the iron‐rich deposits some bacterial types related to cyanobacteria, purple bacteria, and iron‐oxidizing bacteria. Iron‐oxidizing bacteria probably were responsible for precipitation of the ferrihydrite. Chemolithoautotrophic iron‐oxidizing bacteria are microaerophilic and thrive on Fe(II) in a redox gradient, but dissolved oxygen was not detected in the Okuoku‐hachikurou hot spring. Thus, a certain supply of oxygen is needed for metabolism of the microaerophilic iron‐oxidizing bacteria. The distribution of photosynthetic pigments in the iron‐rich parts indicates that the most likely source of oxygen is photosynthesis by cyanobacteria. This symbiotic relationship between cyanobacteria and iron‐oxidizing bacteria can explain the laminated texture of iron‐rich deposits in the Okuoku‐hachikurou hot spring. These laminations may reflect changes in photosynthetic intensity. There is presently some debate about the bacterial groups that may have played roles in precipitation of banded iron formations. This study presents a new bacterial model for iron precipitation and may provide a mechanism for sub‐millimeter laminations in banded iron formations deposited in shallow water.</description><subject>Aragonite</subject><subject>Bacteria</subject><subject>banded iron formation</subject><subject>Chemical precipitation</subject><subject>Citric acid</subject><subject>Cyanobacteria</subject><subject>Deposits</subject><subject>Dissolved oxygen</subject><subject>Electron microscopy</subject><subject>ferrihydrite</subject><subject>Filaments</subject><subject>Formations</subject><subject>Hot springs</subject><subject>Iron</subject><subject>iron-oxidizing bacteria</subject><subject>Lamination</subject><subject>Metabolism</subject><subject>Oxidation</subject><subject>Oxidoreductions</subject><subject>Oxygen</subject><subject>Photosynthesis</subject><subject>Photosynthetic pigments</subject><subject>Pigments</subject><subject>rRNA 16S</subject><subject>Scanning electron microscopy</subject><subject>Shallow water</subject><subject>Sheaths</subject><subject>Spring</subject><subject>Symbionts</subject><subject>Symbiosis</subject><issn>1038-4871</issn><issn>1440-1738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhqMKpJbCf7DEgUsT7DixHYnLsoJ-qNCCqHocTbw260023tqJ2P33OCzqgRNzmZHnfUaeebOMMFqwFO83BasqmjPJVVFSxgpKpVDF_iQ7e268SDXlKq-UZKfZqxg3lKb3RpxlTx9RjyY47Ek8bFvno4vE-rB1w0_SY0o4mhVxwQ95cHpNVmaXNGMkbiB33eS7KV-jXrtuCn4iaz-SuAsJviCLzo1I7oOxRo9TMBfkBnc4vM5eWuyjefM3n2cPnz_9WF7lt3eX18vFbY5V06icr1RtmUSLZc00py2qVW04VRZFbdtSq4Y2tNSNsLJkWiCvmLBGybZVEpHz8-zdce4u-KfJxBG2LmrT9zgYP0VIMBe1KmlSvv1HufFTGNLnoKwEFXXJ1DxPHVU6-BjTVpD23GI4AKMwWwEbmC8O88VhtgL-WAH7hH44or9cbw7_zcH14nsqEp4fcRdHs3_GMXQgJJc1PH69hJvl_ZViXzh8478BQwyfEA</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>TAKASHIMA, CHIZURU</creator><creator>OKUMURA, TOMOYO</creator><creator>NISHIDA, SHIN</creator><creator>KOIKE, HIROKO</creator><creator>KANO, AKIHIRO</creator><general>Blackwell Publishing Asia</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>7QL</scope><scope>H95</scope></search><sort><creationdate>201106</creationdate><title>Bacterial symbiosis forming laminated iron-rich deposits in Okuoku-hachikurou hot spring, Akita Prefecture, Japan</title><author>TAKASHIMA, CHIZURU ; OKUMURA, TOMOYO ; NISHIDA, SHIN ; KOIKE, HIROKO ; KANO, AKIHIRO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4998-3d85f17afa251c30ba8d5e308fa65fb2c890902c96f721c6a3416fe87bb87aa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aragonite</topic><topic>Bacteria</topic><topic>banded iron formation</topic><topic>Chemical precipitation</topic><topic>Citric acid</topic><topic>Cyanobacteria</topic><topic>Deposits</topic><topic>Dissolved oxygen</topic><topic>Electron microscopy</topic><topic>ferrihydrite</topic><topic>Filaments</topic><topic>Formations</topic><topic>Hot springs</topic><topic>Iron</topic><topic>iron-oxidizing bacteria</topic><topic>Lamination</topic><topic>Metabolism</topic><topic>Oxidation</topic><topic>Oxidoreductions</topic><topic>Oxygen</topic><topic>Photosynthesis</topic><topic>Photosynthetic pigments</topic><topic>Pigments</topic><topic>rRNA 16S</topic><topic>Scanning electron microscopy</topic><topic>Shallow water</topic><topic>Sheaths</topic><topic>Spring</topic><topic>Symbionts</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAKASHIMA, CHIZURU</creatorcontrib><creatorcontrib>OKUMURA, TOMOYO</creatorcontrib><creatorcontrib>NISHIDA, SHIN</creatorcontrib><creatorcontrib>KOIKE, HIROKO</creatorcontrib><creatorcontrib>KANO, AKIHIRO</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><jtitle>The island arc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAKASHIMA, CHIZURU</au><au>OKUMURA, TOMOYO</au><au>NISHIDA, SHIN</au><au>KOIKE, HIROKO</au><au>KANO, AKIHIRO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial symbiosis forming laminated iron-rich deposits in Okuoku-hachikurou hot spring, Akita Prefecture, Japan</atitle><jtitle>The island arc</jtitle><date>2011-06</date><risdate>2011</risdate><volume>20</volume><issue>2</issue><spage>294</spage><epage>304</epage><pages>294-304</pages><issn>1038-4871</issn><eissn>1440-1738</eissn><abstract>Banded iron formations are the most characteristic of Archean–Paleoproterozoic sediment records. Laminated textures resembling banded iron formations can be observed in modern hot‐spring environments. Using sedimentological and microbiological techniques, we investigated the processes of laminar formation and considered the origin of lamination textures. An iron‐rich deposit at the Okuoku‐hachikurou hot spring in Japan exhibits sub‐millimeter laminations consisting of bacteria‐induced ferrihydrite and aragonite. The ferrihydrite particles are spherical and exhibit fine lamination, up to 100 µm thick in ferrihydrite‐rich parts. In aragonite‐rich parts, ferrihydrite particles form filamentous textures with diameters of 10–30 µm, but not laminations. Textural analysis using scanning electron microscopy and phylotype analysis using 16S rRNA indicated the bacterial contribution to ferrihydrite precipitation. A sheath‐like fabric showing a meshwork of nanometer‐order organic filaments, and sheath‐forming bacteria were observed in the deposit specimen etched by citric acid. Phylotype analysis detected in the iron‐rich deposits some bacterial types related to cyanobacteria, purple bacteria, and iron‐oxidizing bacteria. Iron‐oxidizing bacteria probably were responsible for precipitation of the ferrihydrite. Chemolithoautotrophic iron‐oxidizing bacteria are microaerophilic and thrive on Fe(II) in a redox gradient, but dissolved oxygen was not detected in the Okuoku‐hachikurou hot spring. Thus, a certain supply of oxygen is needed for metabolism of the microaerophilic iron‐oxidizing bacteria. The distribution of photosynthetic pigments in the iron‐rich parts indicates that the most likely source of oxygen is photosynthesis by cyanobacteria. This symbiotic relationship between cyanobacteria and iron‐oxidizing bacteria can explain the laminated texture of iron‐rich deposits in the Okuoku‐hachikurou hot spring. These laminations may reflect changes in photosynthetic intensity. There is presently some debate about the bacterial groups that may have played roles in precipitation of banded iron formations. This study presents a new bacterial model for iron precipitation and may provide a mechanism for sub‐millimeter laminations in banded iron formations deposited in shallow water.</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Publishing Asia</pub><doi>10.1111/j.1440-1738.2011.00768.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1038-4871
ispartof The island arc, 2011-06, Vol.20 (2), p.294-304
issn 1038-4871
1440-1738
language eng
recordid cdi_proquest_miscellaneous_902365820
source Wiley Online Library - AutoHoldings Journals
subjects Aragonite
Bacteria
banded iron formation
Chemical precipitation
Citric acid
Cyanobacteria
Deposits
Dissolved oxygen
Electron microscopy
ferrihydrite
Filaments
Formations
Hot springs
Iron
iron-oxidizing bacteria
Lamination
Metabolism
Oxidation
Oxidoreductions
Oxygen
Photosynthesis
Photosynthetic pigments
Pigments
rRNA 16S
Scanning electron microscopy
Shallow water
Sheaths
Spring
Symbionts
Symbiosis
title Bacterial symbiosis forming laminated iron-rich deposits in Okuoku-hachikurou hot spring, Akita Prefecture, Japan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20symbiosis%20forming%20laminated%20iron-rich%20deposits%20in%20Okuoku-hachikurou%20hot%20spring,%20Akita%20Prefecture,%20Japan&rft.jtitle=The%20island%20arc&rft.au=TAKASHIMA,%20CHIZURU&rft.date=2011-06&rft.volume=20&rft.issue=2&rft.spage=294&rft.epage=304&rft.pages=294-304&rft.issn=1038-4871&rft.eissn=1440-1738&rft_id=info:doi/10.1111/j.1440-1738.2011.00768.x&rft_dat=%3Cproquest_cross%3E2460652183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460652183&rft_id=info:pmid/&rfr_iscdi=true