genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation
Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pe...
Gespeichert in:
Veröffentlicht in: | Journal of industrial microbiology & biotechnology 2011-05, Vol.38 (5), p.617-626 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 626 |
---|---|
container_issue | 5 |
container_start_page | 617 |
container_title | Journal of industrial microbiology & biotechnology |
container_volume | 38 |
creator | Bera, Aloke K Ho, Nancy W. Y Khan, Aftab Sedlak, Miroslav |
description | Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD⁺-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation. |
doi_str_mv | 10.1007/s10295-010-0806-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902364663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321974331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-449c4972d46c8397378591a179ecbab9361b94afeaa7c40e3e057346d14fdd8b3</originalsourceid><addsrcrecordid>eNqFkktv1TAQhSNERR_wA9hAhISgC8P4ET-WVVVopStY3FZiZznO5DZVEhc7qbj_Hl_lQiUWdOWR_J0zMzpTFK8pfKIA6nOiwExFgAIBDZLIZ8URFUqSquLV81xzqUgleHVYHKd0BwCVUuxFcchAZU7DUfFjgyNOnS_DA8ZbN_dlaMu18_7WxTBsPabSY8SHLnUOS8HE2cfVt0uyvj4tp1B2w33MwvLXtg8JyxbjgOPkpi6ML4uD1vUJX-3fk-Lmy8X1-SVZff96dX62Ir5ibCJCGC-MYo2QXnOjuNKVoY4qg752teGS1ka4Fp1TXgByzDtwIRsq2qbRNT8pPiy-eZKfM6bJDl3y2PduxDAna4BxKaTkT5JaMgmCmh357h_yLsxxzGvsIKqNVixDdIF8DClFbO197AYXt5aC3cVjl3hsjsfu4rEya97sjed6wOav4k8eGXi_B1zyrm-jG32XHjlBQWtNM8cWLuWvcYPxccL_dX-7iFoXrNvEbHyzZkBFPgzOqZb8N7JSrms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862189872</pqid></control><display><type>article</type><title>genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bera, Aloke K ; Ho, Nancy W. Y ; Khan, Aftab ; Sedlak, Miroslav</creator><creatorcontrib>Bera, Aloke K ; Ho, Nancy W. Y ; Khan, Aftab ; Sedlak, Miroslav</creatorcontrib><description>Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD⁺-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-010-0806-6</identifier><identifier>PMID: 20714780</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Aldehyde Reductase - genetics ; Aldehyde Reductase - metabolism ; Analysis ; Biochemistry ; Biofuels ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; Cloning ; D-Xylulose Reductase - genetics ; D-Xylulose Reductase - metabolism ; Dehydrogenases ; E coli ; Enzymes ; Ethanol ; Ethanol - metabolism ; ethanol production ; excretion ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Fungi ; gene overexpression ; Genes ; Genes, Fungal ; Genetic Engineering ; Genomics ; Glucose ; Glucose - metabolism ; Inorganic Chemistry ; Kinases ; Kluyveromyces lactis ; Kluyveromyces marxianus var. lactis ; Life Sciences ; Lignocellulose ; Metabolism ; Metabolites ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Microbiology ; Microorganisms ; mutants ; Mutation ; NAD (coenzyme) ; NADP (coenzyme) ; NADP - metabolism ; Original Paper ; pentose phosphate cycle ; Pentose Phosphate Pathway - genetics ; pentoses ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Pichia - enzymology ; Pichia stipitis ; Plasmids ; Productivity ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Scheffersomyces stipitis ; Studies ; Sugar ; xylitol ; Xylitol - metabolism ; xylose ; Xylose - metabolism ; xylulose ; Yeast ; Yeasts</subject><ispartof>Journal of industrial microbiology & biotechnology, 2011-05, Vol.38 (5), p.617-626</ispartof><rights>Society for Industrial Microbiology 2010</rights><rights>2015 INIST-CNRS</rights><rights>Society for Industrial Microbiology 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-449c4972d46c8397378591a179ecbab9361b94afeaa7c40e3e057346d14fdd8b3</citedby><cites>FETCH-LOGICAL-c522t-449c4972d46c8397378591a179ecbab9361b94afeaa7c40e3e057346d14fdd8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-010-0806-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-010-0806-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24108881$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20714780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bera, Aloke K</creatorcontrib><creatorcontrib>Ho, Nancy W. Y</creatorcontrib><creatorcontrib>Khan, Aftab</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><title>genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation</title><title>Journal of industrial microbiology & biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD⁺-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.</description><subject>Aldehyde Reductase - genetics</subject><subject>Aldehyde Reductase - metabolism</subject><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biofuels</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cloning</subject><subject>D-Xylulose Reductase - genetics</subject><subject>D-Xylulose Reductase - metabolism</subject><subject>Dehydrogenases</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>ethanol production</subject><subject>excretion</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>gene overexpression</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Genetic Engineering</subject><subject>Genomics</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Inorganic Chemistry</subject><subject>Kinases</subject><subject>Kluyveromyces lactis</subject><subject>Kluyveromyces marxianus var. lactis</subject><subject>Life Sciences</subject><subject>Lignocellulose</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>mutants</subject><subject>Mutation</subject><subject>NAD (coenzyme)</subject><subject>NADP (coenzyme)</subject><subject>NADP - metabolism</subject><subject>Original Paper</subject><subject>pentose phosphate cycle</subject><subject>Pentose Phosphate Pathway - genetics</subject><subject>pentoses</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Pichia - enzymology</subject><subject>Pichia stipitis</subject><subject>Plasmids</subject><subject>Productivity</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Scheffersomyces stipitis</subject><subject>Studies</subject><subject>Sugar</subject><subject>xylitol</subject><subject>Xylitol - metabolism</subject><subject>xylose</subject><subject>Xylose - metabolism</subject><subject>xylulose</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkktv1TAQhSNERR_wA9hAhISgC8P4ET-WVVVopStY3FZiZznO5DZVEhc7qbj_Hl_lQiUWdOWR_J0zMzpTFK8pfKIA6nOiwExFgAIBDZLIZ8URFUqSquLV81xzqUgleHVYHKd0BwCVUuxFcchAZU7DUfFjgyNOnS_DA8ZbN_dlaMu18_7WxTBsPabSY8SHLnUOS8HE2cfVt0uyvj4tp1B2w33MwvLXtg8JyxbjgOPkpi6ML4uD1vUJX-3fk-Lmy8X1-SVZff96dX62Ir5ibCJCGC-MYo2QXnOjuNKVoY4qg752teGS1ka4Fp1TXgByzDtwIRsq2qbRNT8pPiy-eZKfM6bJDl3y2PduxDAna4BxKaTkT5JaMgmCmh357h_yLsxxzGvsIKqNVixDdIF8DClFbO197AYXt5aC3cVjl3hsjsfu4rEya97sjed6wOav4k8eGXi_B1zyrm-jG32XHjlBQWtNM8cWLuWvcYPxccL_dX-7iFoXrNvEbHyzZkBFPgzOqZb8N7JSrms</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Bera, Aloke K</creator><creator>Ho, Nancy W. Y</creator><creator>Khan, Aftab</creator><creator>Sedlak, Miroslav</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20110501</creationdate><title>genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation</title><author>Bera, Aloke K ; Ho, Nancy W. Y ; Khan, Aftab ; Sedlak, Miroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-449c4972d46c8397378591a179ecbab9361b94afeaa7c40e3e057346d14fdd8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aldehyde Reductase - genetics</topic><topic>Aldehyde Reductase - metabolism</topic><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biofuels</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cloning</topic><topic>D-Xylulose Reductase - genetics</topic><topic>D-Xylulose Reductase - metabolism</topic><topic>Dehydrogenases</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>ethanol production</topic><topic>excretion</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>gene overexpression</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Genetic Engineering</topic><topic>Genomics</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Inorganic Chemistry</topic><topic>Kinases</topic><topic>Kluyveromyces lactis</topic><topic>Kluyveromyces marxianus var. lactis</topic><topic>Life Sciences</topic><topic>Lignocellulose</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>mutants</topic><topic>Mutation</topic><topic>NAD (coenzyme)</topic><topic>NADP (coenzyme)</topic><topic>NADP - metabolism</topic><topic>Original Paper</topic><topic>pentose phosphate cycle</topic><topic>Pentose Phosphate Pathway - genetics</topic><topic>pentoses</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Pichia - enzymology</topic><topic>Pichia stipitis</topic><topic>Plasmids</topic><topic>Productivity</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Scheffersomyces stipitis</topic><topic>Studies</topic><topic>Sugar</topic><topic>xylitol</topic><topic>Xylitol - metabolism</topic><topic>xylose</topic><topic>Xylose - metabolism</topic><topic>xylulose</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bera, Aloke K</creatorcontrib><creatorcontrib>Ho, Nancy W. Y</creatorcontrib><creatorcontrib>Khan, Aftab</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bera, Aloke K</au><au>Ho, Nancy W. Y</au><au>Khan, Aftab</au><au>Sedlak, Miroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation</atitle><jtitle>Journal of industrial microbiology & biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>38</volume><issue>5</issue><spage>617</spage><epage>626</epage><pages>617-626</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD⁺-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20714780</pmid><doi>10.1007/s10295-010-0806-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-5435 |
ispartof | Journal of industrial microbiology & biotechnology, 2011-05, Vol.38 (5), p.617-626 |
issn | 1367-5435 1476-5535 |
language | eng |
recordid | cdi_proquest_miscellaneous_902364663 |
source | MEDLINE; Oxford Journals Open Access Collection; SpringerLink Journals - AutoHoldings |
subjects | Aldehyde Reductase - genetics Aldehyde Reductase - metabolism Analysis Biochemistry Biofuels Bioinformatics Biological and medical sciences Biomedical and Life Sciences Biotechnology Cloning D-Xylulose Reductase - genetics D-Xylulose Reductase - metabolism Dehydrogenases E coli Enzymes Ethanol Ethanol - metabolism ethanol production excretion Fermentation Fundamental and applied biological sciences. Psychology Fungi gene overexpression Genes Genes, Fungal Genetic Engineering Genomics Glucose Glucose - metabolism Inorganic Chemistry Kinases Kluyveromyces lactis Kluyveromyces marxianus var. lactis Life Sciences Lignocellulose Metabolism Metabolites Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Microbiology Microorganisms mutants Mutation NAD (coenzyme) NADP (coenzyme) NADP - metabolism Original Paper pentose phosphate cycle Pentose Phosphate Pathway - genetics pentoses Phosphotransferases (Alcohol Group Acceptor) - genetics Phosphotransferases (Alcohol Group Acceptor) - metabolism Pichia - enzymology Pichia stipitis Plasmids Productivity Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Scheffersomyces stipitis Studies Sugar xylitol Xylitol - metabolism xylose Xylose - metabolism xylulose Yeast Yeasts |
title | genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=genetic%20overhaul%20of%20Saccharomyces%20cerevisiae%20424A(LNH-ST)%20to%20improve%20xylose%20fermentation&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Bera,%20Aloke%20K&rft.date=2011-05-01&rft.volume=38&rft.issue=5&rft.spage=617&rft.epage=626&rft.pages=617-626&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-010-0806-6&rft_dat=%3Cproquest_cross%3E2321974331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862189872&rft_id=info:pmid/20714780&rfr_iscdi=true |