genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation

Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2011-05, Vol.38 (5), p.617-626
Hauptverfasser: Bera, Aloke K, Ho, Nancy W. Y, Khan, Aftab, Sedlak, Miroslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 5
container_start_page 617
container_title Journal of industrial microbiology & biotechnology
container_volume 38
creator Bera, Aloke K
Ho, Nancy W. Y
Khan, Aftab
Sedlak, Miroslav
description Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD⁺-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.
doi_str_mv 10.1007/s10295-010-0806-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902364663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321974331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-449c4972d46c8397378591a179ecbab9361b94afeaa7c40e3e057346d14fdd8b3</originalsourceid><addsrcrecordid>eNqFkktv1TAQhSNERR_wA9hAhISgC8P4ET-WVVVopStY3FZiZznO5DZVEhc7qbj_Hl_lQiUWdOWR_J0zMzpTFK8pfKIA6nOiwExFgAIBDZLIZ8URFUqSquLV81xzqUgleHVYHKd0BwCVUuxFcchAZU7DUfFjgyNOnS_DA8ZbN_dlaMu18_7WxTBsPabSY8SHLnUOS8HE2cfVt0uyvj4tp1B2w33MwvLXtg8JyxbjgOPkpi6ML4uD1vUJX-3fk-Lmy8X1-SVZff96dX62Ir5ibCJCGC-MYo2QXnOjuNKVoY4qg752teGS1ka4Fp1TXgByzDtwIRsq2qbRNT8pPiy-eZKfM6bJDl3y2PduxDAna4BxKaTkT5JaMgmCmh357h_yLsxxzGvsIKqNVixDdIF8DClFbO197AYXt5aC3cVjl3hsjsfu4rEya97sjed6wOav4k8eGXi_B1zyrm-jG32XHjlBQWtNM8cWLuWvcYPxccL_dX-7iFoXrNvEbHyzZkBFPgzOqZb8N7JSrms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862189872</pqid></control><display><type>article</type><title>genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bera, Aloke K ; Ho, Nancy W. Y ; Khan, Aftab ; Sedlak, Miroslav</creator><creatorcontrib>Bera, Aloke K ; Ho, Nancy W. Y ; Khan, Aftab ; Sedlak, Miroslav</creatorcontrib><description>Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD⁺-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-010-0806-6</identifier><identifier>PMID: 20714780</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Aldehyde Reductase - genetics ; Aldehyde Reductase - metabolism ; Analysis ; Biochemistry ; Biofuels ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; Cloning ; D-Xylulose Reductase - genetics ; D-Xylulose Reductase - metabolism ; Dehydrogenases ; E coli ; Enzymes ; Ethanol ; Ethanol - metabolism ; ethanol production ; excretion ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Fungi ; gene overexpression ; Genes ; Genes, Fungal ; Genetic Engineering ; Genomics ; Glucose ; Glucose - metabolism ; Inorganic Chemistry ; Kinases ; Kluyveromyces lactis ; Kluyveromyces marxianus var. lactis ; Life Sciences ; Lignocellulose ; Metabolism ; Metabolites ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Microbiology ; Microorganisms ; mutants ; Mutation ; NAD (coenzyme) ; NADP (coenzyme) ; NADP - metabolism ; Original Paper ; pentose phosphate cycle ; Pentose Phosphate Pathway - genetics ; pentoses ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Pichia - enzymology ; Pichia stipitis ; Plasmids ; Productivity ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Scheffersomyces stipitis ; Studies ; Sugar ; xylitol ; Xylitol - metabolism ; xylose ; Xylose - metabolism ; xylulose ; Yeast ; Yeasts</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2011-05, Vol.38 (5), p.617-626</ispartof><rights>Society for Industrial Microbiology 2010</rights><rights>2015 INIST-CNRS</rights><rights>Society for Industrial Microbiology 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-449c4972d46c8397378591a179ecbab9361b94afeaa7c40e3e057346d14fdd8b3</citedby><cites>FETCH-LOGICAL-c522t-449c4972d46c8397378591a179ecbab9361b94afeaa7c40e3e057346d14fdd8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-010-0806-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-010-0806-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24108881$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20714780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bera, Aloke K</creatorcontrib><creatorcontrib>Ho, Nancy W. Y</creatorcontrib><creatorcontrib>Khan, Aftab</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><title>genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD⁺-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.</description><subject>Aldehyde Reductase - genetics</subject><subject>Aldehyde Reductase - metabolism</subject><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biofuels</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cloning</subject><subject>D-Xylulose Reductase - genetics</subject><subject>D-Xylulose Reductase - metabolism</subject><subject>Dehydrogenases</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>ethanol production</subject><subject>excretion</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>gene overexpression</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Genetic Engineering</subject><subject>Genomics</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Inorganic Chemistry</subject><subject>Kinases</subject><subject>Kluyveromyces lactis</subject><subject>Kluyveromyces marxianus var. lactis</subject><subject>Life Sciences</subject><subject>Lignocellulose</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>mutants</subject><subject>Mutation</subject><subject>NAD (coenzyme)</subject><subject>NADP (coenzyme)</subject><subject>NADP - metabolism</subject><subject>Original Paper</subject><subject>pentose phosphate cycle</subject><subject>Pentose Phosphate Pathway - genetics</subject><subject>pentoses</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Pichia - enzymology</subject><subject>Pichia stipitis</subject><subject>Plasmids</subject><subject>Productivity</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Scheffersomyces stipitis</subject><subject>Studies</subject><subject>Sugar</subject><subject>xylitol</subject><subject>Xylitol - metabolism</subject><subject>xylose</subject><subject>Xylose - metabolism</subject><subject>xylulose</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkktv1TAQhSNERR_wA9hAhISgC8P4ET-WVVVopStY3FZiZznO5DZVEhc7qbj_Hl_lQiUWdOWR_J0zMzpTFK8pfKIA6nOiwExFgAIBDZLIZ8URFUqSquLV81xzqUgleHVYHKd0BwCVUuxFcchAZU7DUfFjgyNOnS_DA8ZbN_dlaMu18_7WxTBsPabSY8SHLnUOS8HE2cfVt0uyvj4tp1B2w33MwvLXtg8JyxbjgOPkpi6ML4uD1vUJX-3fk-Lmy8X1-SVZff96dX62Ir5ibCJCGC-MYo2QXnOjuNKVoY4qg752teGS1ka4Fp1TXgByzDtwIRsq2qbRNT8pPiy-eZKfM6bJDl3y2PduxDAna4BxKaTkT5JaMgmCmh357h_yLsxxzGvsIKqNVixDdIF8DClFbO197AYXt5aC3cVjl3hsjsfu4rEya97sjed6wOav4k8eGXi_B1zyrm-jG32XHjlBQWtNM8cWLuWvcYPxccL_dX-7iFoXrNvEbHyzZkBFPgzOqZb8N7JSrms</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Bera, Aloke K</creator><creator>Ho, Nancy W. Y</creator><creator>Khan, Aftab</creator><creator>Sedlak, Miroslav</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20110501</creationdate><title>genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation</title><author>Bera, Aloke K ; Ho, Nancy W. Y ; Khan, Aftab ; Sedlak, Miroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-449c4972d46c8397378591a179ecbab9361b94afeaa7c40e3e057346d14fdd8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aldehyde Reductase - genetics</topic><topic>Aldehyde Reductase - metabolism</topic><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biofuels</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cloning</topic><topic>D-Xylulose Reductase - genetics</topic><topic>D-Xylulose Reductase - metabolism</topic><topic>Dehydrogenases</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>ethanol production</topic><topic>excretion</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>gene overexpression</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Genetic Engineering</topic><topic>Genomics</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Inorganic Chemistry</topic><topic>Kinases</topic><topic>Kluyveromyces lactis</topic><topic>Kluyveromyces marxianus var. lactis</topic><topic>Life Sciences</topic><topic>Lignocellulose</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>mutants</topic><topic>Mutation</topic><topic>NAD (coenzyme)</topic><topic>NADP (coenzyme)</topic><topic>NADP - metabolism</topic><topic>Original Paper</topic><topic>pentose phosphate cycle</topic><topic>Pentose Phosphate Pathway - genetics</topic><topic>pentoses</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Pichia - enzymology</topic><topic>Pichia stipitis</topic><topic>Plasmids</topic><topic>Productivity</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Scheffersomyces stipitis</topic><topic>Studies</topic><topic>Sugar</topic><topic>xylitol</topic><topic>Xylitol - metabolism</topic><topic>xylose</topic><topic>Xylose - metabolism</topic><topic>xylulose</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bera, Aloke K</creatorcontrib><creatorcontrib>Ho, Nancy W. Y</creatorcontrib><creatorcontrib>Khan, Aftab</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bera, Aloke K</au><au>Ho, Nancy W. Y</au><au>Khan, Aftab</au><au>Sedlak, Miroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>38</volume><issue>5</issue><spage>617</spage><epage>626</epage><pages>617-626</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD⁺-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20714780</pmid><doi>10.1007/s10295-010-0806-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2011-05, Vol.38 (5), p.617-626
issn 1367-5435
1476-5535
language eng
recordid cdi_proquest_miscellaneous_902364663
source MEDLINE; Oxford Journals Open Access Collection; SpringerLink Journals - AutoHoldings
subjects Aldehyde Reductase - genetics
Aldehyde Reductase - metabolism
Analysis
Biochemistry
Biofuels
Bioinformatics
Biological and medical sciences
Biomedical and Life Sciences
Biotechnology
Cloning
D-Xylulose Reductase - genetics
D-Xylulose Reductase - metabolism
Dehydrogenases
E coli
Enzymes
Ethanol
Ethanol - metabolism
ethanol production
excretion
Fermentation
Fundamental and applied biological sciences. Psychology
Fungi
gene overexpression
Genes
Genes, Fungal
Genetic Engineering
Genomics
Glucose
Glucose - metabolism
Inorganic Chemistry
Kinases
Kluyveromyces lactis
Kluyveromyces marxianus var. lactis
Life Sciences
Lignocellulose
Metabolism
Metabolites
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Microbiology
Microorganisms
mutants
Mutation
NAD (coenzyme)
NADP (coenzyme)
NADP - metabolism
Original Paper
pentose phosphate cycle
Pentose Phosphate Pathway - genetics
pentoses
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Pichia - enzymology
Pichia stipitis
Plasmids
Productivity
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Scheffersomyces stipitis
Studies
Sugar
xylitol
Xylitol - metabolism
xylose
Xylose - metabolism
xylulose
Yeast
Yeasts
title genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=genetic%20overhaul%20of%20Saccharomyces%20cerevisiae%20424A(LNH-ST)%20to%20improve%20xylose%20fermentation&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Bera,%20Aloke%20K&rft.date=2011-05-01&rft.volume=38&rft.issue=5&rft.spage=617&rft.epage=626&rft.pages=617-626&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-010-0806-6&rft_dat=%3Cproquest_cross%3E2321974331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862189872&rft_id=info:pmid/20714780&rfr_iscdi=true