Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings

The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2011-04, Vol.36 (7-8), p.1505-1521
Hauptverfasser: Christie, Duncan A, Boninsegna, José A, Cleaveland, Malcolm K, Lara, Antonio, Le Quesne, Carlos, Morales, Mariano S, Mudelsee, Manfred, Stahle, David W, Villalba, Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1521
container_issue 7-8
container_start_page 1505
container_title Climate dynamics
container_volume 36
creator Christie, Duncan A
Boninsegna, José A
Cleaveland, Malcolm K
Lara, Antonio
Le Quesne, Carlos
Morales, Mariano S
Mudelsee, Manfred
Stahle, David W
Villalba, Ricardo
description The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°-39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657 years and captures interannual to decadal scales of variability in late spring-early summer PDSI. These changes are related to the north-south oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Niño-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross-Amundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.
doi_str_mv 10.1007/s00382-009-0723-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_902358442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355151729</galeid><sourcerecordid>A355151729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a561t-6b62bfcc490bf986c1b4a2272655501f0419c59a3fbf6648e0b6d1249a9368e63</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEEkvhB3AiQqLAIWX8mfi4qvioVIRE27PlOONdV9lksROJ_ntmSQUsh8oHS57nHeudeYviJYMzBlB_yACi4RWAqaDmopKPihWTgl4aIx8XKzACqlrV6mnxLOdbACZ1zVdFWqfYxemu9Fs3bDCXcSinLZbXuNtjchNWX5HqmJIb0FGN7hynOA7lGH6T66EjWY6Dx9J1JRNSlwn9OOQpzX7Crgxp3JEQsUpx2OTnxZPg-owv7u-T4ubTx-vzL9Xlt88X5-vLyinNpkq3mrfBe2mgDabRnrXScV5zrZQCFkAy45VxIrRBa9kgtLpjXBpnhG5Qi5Pi7dJ3n8YfM-bJ7mL22PfkZJyzNcCFaqTkRL57kGTAG6B_QRD6-j_0dpzTQD5so4yuNQhG0NkCbVyPNg5hpLF5Oh3uIk0GQ6T3tVCKKVZzQ4L3RwJiJvw5bdycs724-n7Mnv7DbtH10zaP_XzYST4G2QL6NOacMNh9ijuX7siPPYTGLqGxFBp7CI2VpHlzb89l7_pA2_Yx_xFyCbXgcHDIFy7vDzvF9HcMDzV_tYiCG63bJGp8c0XdJKVR1bzh4hc6btaz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859676031</pqid></control><display><type>article</type><title>Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings</title><source>SpringerNature Journals</source><creator>Christie, Duncan A ; Boninsegna, José A ; Cleaveland, Malcolm K ; Lara, Antonio ; Le Quesne, Carlos ; Morales, Mariano S ; Mudelsee, Manfred ; Stahle, David W ; Villalba, Ricardo</creator><creatorcontrib>Christie, Duncan A ; Boninsegna, José A ; Cleaveland, Malcolm K ; Lara, Antonio ; Le Quesne, Carlos ; Morales, Mariano S ; Mudelsee, Manfred ; Stahle, David W ; Villalba, Ricardo</creatorcontrib><description>The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°-39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657 years and captures interannual to decadal scales of variability in late spring-early summer PDSI. These changes are related to the north-south oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Niño-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross-Amundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-009-0723-4</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Antarctic Oscillation ; Aquatic resources ; Atmospheric forcing ; Austrocedrus chilensis ; biodiversity ; Biodiversity hot spots ; Climate change ; Climatology ; Climatology. Bioclimatology. Climate change ; correlation ; Drought ; Droughts ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Ecosystems ; El Nino ; Environmental risk ; Exact sciences and technology ; External geophysics ; Extreme drought ; Geophysics/Geodesy ; Glaciers ; Global temperature changes ; growth rings ; human population ; Human populations ; Latitude ; Libocedrus chilensis ; Meteorology ; Oceanography ; Plant growth ; Rain ; Rain and rainfall ; risk ; seeds ; Spring ; Stream discharge ; Stream flow ; Streamflow ; Summer ; Toy industry ; Trees ; Water resources</subject><ispartof>Climate dynamics, 2011-04, Vol.36 (7-8), p.1505-1521</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a561t-6b62bfcc490bf986c1b4a2272655501f0419c59a3fbf6648e0b6d1249a9368e63</citedby><cites>FETCH-LOGICAL-a561t-6b62bfcc490bf986c1b4a2272655501f0419c59a3fbf6648e0b6d1249a9368e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-009-0723-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-009-0723-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24073201$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Christie, Duncan A</creatorcontrib><creatorcontrib>Boninsegna, José A</creatorcontrib><creatorcontrib>Cleaveland, Malcolm K</creatorcontrib><creatorcontrib>Lara, Antonio</creatorcontrib><creatorcontrib>Le Quesne, Carlos</creatorcontrib><creatorcontrib>Morales, Mariano S</creatorcontrib><creatorcontrib>Mudelsee, Manfred</creatorcontrib><creatorcontrib>Stahle, David W</creatorcontrib><creatorcontrib>Villalba, Ricardo</creatorcontrib><title>Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°-39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657 years and captures interannual to decadal scales of variability in late spring-early summer PDSI. These changes are related to the north-south oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Niño-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross-Amundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.</description><subject>Antarctic Oscillation</subject><subject>Aquatic resources</subject><subject>Atmospheric forcing</subject><subject>Austrocedrus chilensis</subject><subject>biodiversity</subject><subject>Biodiversity hot spots</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>correlation</subject><subject>Drought</subject><subject>Droughts</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Ecosystems</subject><subject>El Nino</subject><subject>Environmental risk</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Extreme drought</subject><subject>Geophysics/Geodesy</subject><subject>Glaciers</subject><subject>Global temperature changes</subject><subject>growth rings</subject><subject>human population</subject><subject>Human populations</subject><subject>Latitude</subject><subject>Libocedrus chilensis</subject><subject>Meteorology</subject><subject>Oceanography</subject><subject>Plant growth</subject><subject>Rain</subject><subject>Rain and rainfall</subject><subject>risk</subject><subject>seeds</subject><subject>Spring</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow</subject><subject>Summer</subject><subject>Toy industry</subject><subject>Trees</subject><subject>Water resources</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1v1DAQhiMEEkvhB3AiQqLAIWX8mfi4qvioVIRE27PlOONdV9lksROJ_ntmSQUsh8oHS57nHeudeYviJYMzBlB_yACi4RWAqaDmopKPihWTgl4aIx8XKzACqlrV6mnxLOdbACZ1zVdFWqfYxemu9Fs3bDCXcSinLZbXuNtjchNWX5HqmJIb0FGN7hynOA7lGH6T66EjWY6Dx9J1JRNSlwn9OOQpzX7Crgxp3JEQsUpx2OTnxZPg-owv7u-T4ubTx-vzL9Xlt88X5-vLyinNpkq3mrfBe2mgDabRnrXScV5zrZQCFkAy45VxIrRBa9kgtLpjXBpnhG5Qi5Pi7dJ3n8YfM-bJ7mL22PfkZJyzNcCFaqTkRL57kGTAG6B_QRD6-j_0dpzTQD5so4yuNQhG0NkCbVyPNg5hpLF5Oh3uIk0GQ6T3tVCKKVZzQ4L3RwJiJvw5bdycs724-n7Mnv7DbtH10zaP_XzYST4G2QL6NOacMNh9ijuX7siPPYTGLqGxFBp7CI2VpHlzb89l7_pA2_Yx_xFyCbXgcHDIFy7vDzvF9HcMDzV_tYiCG63bJGp8c0XdJKVR1bzh4hc6btaz</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Christie, Duncan A</creator><creator>Boninsegna, José A</creator><creator>Cleaveland, Malcolm K</creator><creator>Lara, Antonio</creator><creator>Le Quesne, Carlos</creator><creator>Morales, Mariano S</creator><creator>Mudelsee, Manfred</creator><creator>Stahle, David W</creator><creator>Villalba, Ricardo</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20110401</creationdate><title>Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings</title><author>Christie, Duncan A ; Boninsegna, José A ; Cleaveland, Malcolm K ; Lara, Antonio ; Le Quesne, Carlos ; Morales, Mariano S ; Mudelsee, Manfred ; Stahle, David W ; Villalba, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a561t-6b62bfcc490bf986c1b4a2272655501f0419c59a3fbf6648e0b6d1249a9368e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antarctic Oscillation</topic><topic>Aquatic resources</topic><topic>Atmospheric forcing</topic><topic>Austrocedrus chilensis</topic><topic>biodiversity</topic><topic>Biodiversity hot spots</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>correlation</topic><topic>Drought</topic><topic>Droughts</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Ecosystems</topic><topic>El Nino</topic><topic>Environmental risk</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Extreme drought</topic><topic>Geophysics/Geodesy</topic><topic>Glaciers</topic><topic>Global temperature changes</topic><topic>growth rings</topic><topic>human population</topic><topic>Human populations</topic><topic>Latitude</topic><topic>Libocedrus chilensis</topic><topic>Meteorology</topic><topic>Oceanography</topic><topic>Plant growth</topic><topic>Rain</topic><topic>Rain and rainfall</topic><topic>risk</topic><topic>seeds</topic><topic>Spring</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow</topic><topic>Summer</topic><topic>Toy industry</topic><topic>Trees</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christie, Duncan A</creatorcontrib><creatorcontrib>Boninsegna, José A</creatorcontrib><creatorcontrib>Cleaveland, Malcolm K</creatorcontrib><creatorcontrib>Lara, Antonio</creatorcontrib><creatorcontrib>Le Quesne, Carlos</creatorcontrib><creatorcontrib>Morales, Mariano S</creatorcontrib><creatorcontrib>Mudelsee, Manfred</creatorcontrib><creatorcontrib>Stahle, David W</creatorcontrib><creatorcontrib>Villalba, Ricardo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christie, Duncan A</au><au>Boninsegna, José A</au><au>Cleaveland, Malcolm K</au><au>Lara, Antonio</au><au>Le Quesne, Carlos</au><au>Morales, Mariano S</au><au>Mudelsee, Manfred</au><au>Stahle, David W</au><au>Villalba, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>36</volume><issue>7-8</issue><spage>1505</spage><epage>1521</epage><pages>1505-1521</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°-39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657 years and captures interannual to decadal scales of variability in late spring-early summer PDSI. These changes are related to the north-south oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Niño-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross-Amundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00382-009-0723-4</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2011-04, Vol.36 (7-8), p.1505-1521
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_miscellaneous_902358442
source SpringerNature Journals
subjects Antarctic Oscillation
Aquatic resources
Atmospheric forcing
Austrocedrus chilensis
biodiversity
Biodiversity hot spots
Climate change
Climatology
Climatology. Bioclimatology. Climate change
correlation
Drought
Droughts
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Ecosystems
El Nino
Environmental risk
Exact sciences and technology
External geophysics
Extreme drought
Geophysics/Geodesy
Glaciers
Global temperature changes
growth rings
human population
Human populations
Latitude
Libocedrus chilensis
Meteorology
Oceanography
Plant growth
Rain
Rain and rainfall
risk
seeds
Spring
Stream discharge
Stream flow
Streamflow
Summer
Toy industry
Trees
Water resources
title Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aridity%20changes%20in%20the%20Temperate-Mediterranean%20transition%20of%20the%20Andes%20since%20ad%201346%20reconstructed%20from%20tree-rings&rft.jtitle=Climate%20dynamics&rft.au=Christie,%20Duncan%20A&rft.date=2011-04-01&rft.volume=36&rft.issue=7-8&rft.spage=1505&rft.epage=1521&rft.pages=1505-1521&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-009-0723-4&rft_dat=%3Cgale_proqu%3EA355151729%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=859676031&rft_id=info:pmid/&rft_galeid=A355151729&rfr_iscdi=true