Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings
The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2011-04, Vol.36 (7-8), p.1505-1521 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1521 |
---|---|
container_issue | 7-8 |
container_start_page | 1505 |
container_title | Climate dynamics |
container_volume | 36 |
creator | Christie, Duncan A Boninsegna, José A Cleaveland, Malcolm K Lara, Antonio Le Quesne, Carlos Morales, Mariano S Mudelsee, Manfred Stahle, David W Villalba, Ricardo |
description | The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°-39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657 years and captures interannual to decadal scales of variability in late spring-early summer PDSI. These changes are related to the north-south oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Niño-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross-Amundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy. |
doi_str_mv | 10.1007/s00382-009-0723-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_902358442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355151729</galeid><sourcerecordid>A355151729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a561t-6b62bfcc490bf986c1b4a2272655501f0419c59a3fbf6648e0b6d1249a9368e63</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEEkvhB3AiQqLAIWX8mfi4qvioVIRE27PlOONdV9lksROJ_ntmSQUsh8oHS57nHeudeYviJYMzBlB_yACi4RWAqaDmopKPihWTgl4aIx8XKzACqlrV6mnxLOdbACZ1zVdFWqfYxemu9Fs3bDCXcSinLZbXuNtjchNWX5HqmJIb0FGN7hynOA7lGH6T66EjWY6Dx9J1JRNSlwn9OOQpzX7Crgxp3JEQsUpx2OTnxZPg-owv7u-T4ubTx-vzL9Xlt88X5-vLyinNpkq3mrfBe2mgDabRnrXScV5zrZQCFkAy45VxIrRBa9kgtLpjXBpnhG5Qi5Pi7dJ3n8YfM-bJ7mL22PfkZJyzNcCFaqTkRL57kGTAG6B_QRD6-j_0dpzTQD5so4yuNQhG0NkCbVyPNg5hpLF5Oh3uIk0GQ6T3tVCKKVZzQ4L3RwJiJvw5bdycs724-n7Mnv7DbtH10zaP_XzYST4G2QL6NOacMNh9ijuX7siPPYTGLqGxFBp7CI2VpHlzb89l7_pA2_Yx_xFyCbXgcHDIFy7vDzvF9HcMDzV_tYiCG63bJGp8c0XdJKVR1bzh4hc6btaz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859676031</pqid></control><display><type>article</type><title>Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings</title><source>SpringerNature Journals</source><creator>Christie, Duncan A ; Boninsegna, José A ; Cleaveland, Malcolm K ; Lara, Antonio ; Le Quesne, Carlos ; Morales, Mariano S ; Mudelsee, Manfred ; Stahle, David W ; Villalba, Ricardo</creator><creatorcontrib>Christie, Duncan A ; Boninsegna, José A ; Cleaveland, Malcolm K ; Lara, Antonio ; Le Quesne, Carlos ; Morales, Mariano S ; Mudelsee, Manfred ; Stahle, David W ; Villalba, Ricardo</creatorcontrib><description>The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°-39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657 years and captures interannual to decadal scales of variability in late spring-early summer PDSI. These changes are related to the north-south oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Niño-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross-Amundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-009-0723-4</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Antarctic Oscillation ; Aquatic resources ; Atmospheric forcing ; Austrocedrus chilensis ; biodiversity ; Biodiversity hot spots ; Climate change ; Climatology ; Climatology. Bioclimatology. Climate change ; correlation ; Drought ; Droughts ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Ecosystems ; El Nino ; Environmental risk ; Exact sciences and technology ; External geophysics ; Extreme drought ; Geophysics/Geodesy ; Glaciers ; Global temperature changes ; growth rings ; human population ; Human populations ; Latitude ; Libocedrus chilensis ; Meteorology ; Oceanography ; Plant growth ; Rain ; Rain and rainfall ; risk ; seeds ; Spring ; Stream discharge ; Stream flow ; Streamflow ; Summer ; Toy industry ; Trees ; Water resources</subject><ispartof>Climate dynamics, 2011-04, Vol.36 (7-8), p.1505-1521</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a561t-6b62bfcc490bf986c1b4a2272655501f0419c59a3fbf6648e0b6d1249a9368e63</citedby><cites>FETCH-LOGICAL-a561t-6b62bfcc490bf986c1b4a2272655501f0419c59a3fbf6648e0b6d1249a9368e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-009-0723-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-009-0723-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24073201$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Christie, Duncan A</creatorcontrib><creatorcontrib>Boninsegna, José A</creatorcontrib><creatorcontrib>Cleaveland, Malcolm K</creatorcontrib><creatorcontrib>Lara, Antonio</creatorcontrib><creatorcontrib>Le Quesne, Carlos</creatorcontrib><creatorcontrib>Morales, Mariano S</creatorcontrib><creatorcontrib>Mudelsee, Manfred</creatorcontrib><creatorcontrib>Stahle, David W</creatorcontrib><creatorcontrib>Villalba, Ricardo</creatorcontrib><title>Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°-39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657 years and captures interannual to decadal scales of variability in late spring-early summer PDSI. These changes are related to the north-south oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Niño-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross-Amundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.</description><subject>Antarctic Oscillation</subject><subject>Aquatic resources</subject><subject>Atmospheric forcing</subject><subject>Austrocedrus chilensis</subject><subject>biodiversity</subject><subject>Biodiversity hot spots</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>correlation</subject><subject>Drought</subject><subject>Droughts</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Ecosystems</subject><subject>El Nino</subject><subject>Environmental risk</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Extreme drought</subject><subject>Geophysics/Geodesy</subject><subject>Glaciers</subject><subject>Global temperature changes</subject><subject>growth rings</subject><subject>human population</subject><subject>Human populations</subject><subject>Latitude</subject><subject>Libocedrus chilensis</subject><subject>Meteorology</subject><subject>Oceanography</subject><subject>Plant growth</subject><subject>Rain</subject><subject>Rain and rainfall</subject><subject>risk</subject><subject>seeds</subject><subject>Spring</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow</subject><subject>Summer</subject><subject>Toy industry</subject><subject>Trees</subject><subject>Water resources</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1v1DAQhiMEEkvhB3AiQqLAIWX8mfi4qvioVIRE27PlOONdV9lksROJ_ntmSQUsh8oHS57nHeudeYviJYMzBlB_yACi4RWAqaDmopKPihWTgl4aIx8XKzACqlrV6mnxLOdbACZ1zVdFWqfYxemu9Fs3bDCXcSinLZbXuNtjchNWX5HqmJIb0FGN7hynOA7lGH6T66EjWY6Dx9J1JRNSlwn9OOQpzX7Crgxp3JEQsUpx2OTnxZPg-owv7u-T4ubTx-vzL9Xlt88X5-vLyinNpkq3mrfBe2mgDabRnrXScV5zrZQCFkAy45VxIrRBa9kgtLpjXBpnhG5Qi5Pi7dJ3n8YfM-bJ7mL22PfkZJyzNcCFaqTkRL57kGTAG6B_QRD6-j_0dpzTQD5so4yuNQhG0NkCbVyPNg5hpLF5Oh3uIk0GQ6T3tVCKKVZzQ4L3RwJiJvw5bdycs724-n7Mnv7DbtH10zaP_XzYST4G2QL6NOacMNh9ijuX7siPPYTGLqGxFBp7CI2VpHlzb89l7_pA2_Yx_xFyCbXgcHDIFy7vDzvF9HcMDzV_tYiCG63bJGp8c0XdJKVR1bzh4hc6btaz</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Christie, Duncan A</creator><creator>Boninsegna, José A</creator><creator>Cleaveland, Malcolm K</creator><creator>Lara, Antonio</creator><creator>Le Quesne, Carlos</creator><creator>Morales, Mariano S</creator><creator>Mudelsee, Manfred</creator><creator>Stahle, David W</creator><creator>Villalba, Ricardo</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20110401</creationdate><title>Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings</title><author>Christie, Duncan A ; Boninsegna, José A ; Cleaveland, Malcolm K ; Lara, Antonio ; Le Quesne, Carlos ; Morales, Mariano S ; Mudelsee, Manfred ; Stahle, David W ; Villalba, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a561t-6b62bfcc490bf986c1b4a2272655501f0419c59a3fbf6648e0b6d1249a9368e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antarctic Oscillation</topic><topic>Aquatic resources</topic><topic>Atmospheric forcing</topic><topic>Austrocedrus chilensis</topic><topic>biodiversity</topic><topic>Biodiversity hot spots</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>correlation</topic><topic>Drought</topic><topic>Droughts</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Ecosystems</topic><topic>El Nino</topic><topic>Environmental risk</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Extreme drought</topic><topic>Geophysics/Geodesy</topic><topic>Glaciers</topic><topic>Global temperature changes</topic><topic>growth rings</topic><topic>human population</topic><topic>Human populations</topic><topic>Latitude</topic><topic>Libocedrus chilensis</topic><topic>Meteorology</topic><topic>Oceanography</topic><topic>Plant growth</topic><topic>Rain</topic><topic>Rain and rainfall</topic><topic>risk</topic><topic>seeds</topic><topic>Spring</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow</topic><topic>Summer</topic><topic>Toy industry</topic><topic>Trees</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christie, Duncan A</creatorcontrib><creatorcontrib>Boninsegna, José A</creatorcontrib><creatorcontrib>Cleaveland, Malcolm K</creatorcontrib><creatorcontrib>Lara, Antonio</creatorcontrib><creatorcontrib>Le Quesne, Carlos</creatorcontrib><creatorcontrib>Morales, Mariano S</creatorcontrib><creatorcontrib>Mudelsee, Manfred</creatorcontrib><creatorcontrib>Stahle, David W</creatorcontrib><creatorcontrib>Villalba, Ricardo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christie, Duncan A</au><au>Boninsegna, José A</au><au>Cleaveland, Malcolm K</au><au>Lara, Antonio</au><au>Le Quesne, Carlos</au><au>Morales, Mariano S</au><au>Mudelsee, Manfred</au><au>Stahle, David W</au><au>Villalba, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>36</volume><issue>7-8</issue><spage>1505</spage><epage>1521</epage><pages>1505-1521</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°-39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657 years and captures interannual to decadal scales of variability in late spring-early summer PDSI. These changes are related to the north-south oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Niño-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross-Amundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00382-009-0723-4</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2011-04, Vol.36 (7-8), p.1505-1521 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_miscellaneous_902358442 |
source | SpringerNature Journals |
subjects | Antarctic Oscillation Aquatic resources Atmospheric forcing Austrocedrus chilensis biodiversity Biodiversity hot spots Climate change Climatology Climatology. Bioclimatology. Climate change correlation Drought Droughts Earth and Environmental Science Earth Sciences Earth, ocean, space Ecosystems El Nino Environmental risk Exact sciences and technology External geophysics Extreme drought Geophysics/Geodesy Glaciers Global temperature changes growth rings human population Human populations Latitude Libocedrus chilensis Meteorology Oceanography Plant growth Rain Rain and rainfall risk seeds Spring Stream discharge Stream flow Streamflow Summer Toy industry Trees Water resources |
title | Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aridity%20changes%20in%20the%20Temperate-Mediterranean%20transition%20of%20the%20Andes%20since%20ad%201346%20reconstructed%20from%20tree-rings&rft.jtitle=Climate%20dynamics&rft.au=Christie,%20Duncan%20A&rft.date=2011-04-01&rft.volume=36&rft.issue=7-8&rft.spage=1505&rft.epage=1521&rft.pages=1505-1521&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-009-0723-4&rft_dat=%3Cgale_proqu%3EA355151729%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=859676031&rft_id=info:pmid/&rft_galeid=A355151729&rfr_iscdi=true |