A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development
To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs) [1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHE...
Gespeichert in:
Veröffentlicht in: | Current biology 2009-08, Vol.19 (16), p.1384-1388 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1388 |
---|---|
container_issue | 16 |
container_start_page | 1384 |
container_title | Current biology |
container_volume | 19 |
creator | Pontier, Daphne B. Tijsterman, Marcel |
description | To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs)
[1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) or single-strand annealing (SSA)
[2]. Here, we created a transgenic reporter system in
C. elegans to investigate the relative contribution of these pathways in somatic cells during animal development. Although all three canonical pathways contribute to repair in the soma, in their combined absence, animals develop without growth delay and chromosomal breaks are still efficiently repaired. This residual repair, which we call alternative end-joining, dominates DSB repair only in the absence of NHEJ and resembles SSA, but acts independent of the SSA nuclease XPF and repair proteins from other pathways. The dynamic interplay between repair pathways might be developmentally regulated, because it was lost from terminally differentiated cells in adult animals. Our results demonstrate profound versatility in DSB repair pathways for somatic cells of
C. elegans, which are thus extremely fit to deal with chromosomal breaks. |
doi_str_mv | 10.1016/j.cub.2009.06.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902357005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982209013220</els_id><sourcerecordid>902357005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-b8ce3ea7044114888b43272d07c42a27ab28bc745655c7ab619b9b7c9aa5280b3</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi0EoqHwA7gg3zjt1nZ2_SFOJYW2UgWowNmyvZPgdNdObW-q_HtcJRI3TqPRPO8rzYPQe0paSii_2LZuti0jRLWEt6TrX6AFlUI1pOv6l2hBFCeNkoydoTc5bwmhTCr-Gp1RxTsuhVigcInvo51zwd-gPMX0gOMaX8XZjtD8LMmEAX9OYB7wPeyMT_iHKX-ezCHj67iHFOqEECfAt6HAJvlywMOcfNjgVYthhI2pyBXsYYy7CUJ5i16tzZjh3Wmeo99fv_xa3TR3369vV5d3jeuYKI2VDpZgRP2D0k5KabslE2wgot4NE8YyaZ3oet73rm6cKquscMqYnklil-fo47F3l-LjDLnoyWcH42gCxDlrRdiyF4T0laRH0qWYc4K13iU_mXTQlOhny3qrq2X9bFkTrqvlmvlwap_tBMO_xElrBT4dAag_7j0knZ2H4GDwCVzRQ_T_qf8Lb1yNQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902357005</pqid></control><display><type>article</type><title>A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pontier, Daphne B. ; Tijsterman, Marcel</creator><creatorcontrib>Pontier, Daphne B. ; Tijsterman, Marcel</creatorcontrib><description>To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs)
[1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) or single-strand annealing (SSA)
[2]. Here, we created a transgenic reporter system in
C. elegans to investigate the relative contribution of these pathways in somatic cells during animal development. Although all three canonical pathways contribute to repair in the soma, in their combined absence, animals develop without growth delay and chromosomal breaks are still efficiently repaired. This residual repair, which we call alternative end-joining, dominates DSB repair only in the absence of NHEJ and resembles SSA, but acts independent of the SSA nuclease XPF and repair proteins from other pathways. The dynamic interplay between repair pathways might be developmentally regulated, because it was lost from terminally differentiated cells in adult animals. Our results demonstrate profound versatility in DSB repair pathways for somatic cells of
C. elegans, which are thus extremely fit to deal with chromosomal breaks.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2009.06.045</identifier><identifier>PMID: 19646877</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - growth & development ; Caenorhabditis elegans Proteins - genetics ; Cell cycle ; DEVBIO ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA repair ; DNA Repair - genetics ; DNA Repair - physiology ; DNA, Helminth - genetics ; DNA, Helminth - metabolism ; Double-strand break repair ; Genes, Reporter ; Genome, Helminth ; Genomes ; genomics ; homologous recombination ; Larva ; Models, Genetic ; Non-homologous end joining ; Nuclease ; Polymerase Chain Reaction ; Recombinant Fusion Proteins - physiology ; Sequence Deletion ; Somatic cells ; Transgenes - genetics</subject><ispartof>Current biology, 2009-08, Vol.19 (16), p.1384-1388</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-b8ce3ea7044114888b43272d07c42a27ab28bc745655c7ab619b9b7c9aa5280b3</citedby><cites>FETCH-LOGICAL-c427t-b8ce3ea7044114888b43272d07c42a27ab28bc745655c7ab619b9b7c9aa5280b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982209013220$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19646877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pontier, Daphne B.</creatorcontrib><creatorcontrib>Tijsterman, Marcel</creatorcontrib><title>A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs)
[1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) or single-strand annealing (SSA)
[2]. Here, we created a transgenic reporter system in
C. elegans to investigate the relative contribution of these pathways in somatic cells during animal development. Although all three canonical pathways contribute to repair in the soma, in their combined absence, animals develop without growth delay and chromosomal breaks are still efficiently repaired. This residual repair, which we call alternative end-joining, dominates DSB repair only in the absence of NHEJ and resembles SSA, but acts independent of the SSA nuclease XPF and repair proteins from other pathways. The dynamic interplay between repair pathways might be developmentally regulated, because it was lost from terminally differentiated cells in adult animals. Our results demonstrate profound versatility in DSB repair pathways for somatic cells of
C. elegans, which are thus extremely fit to deal with chromosomal breaks.</description><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - growth & development</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Cell cycle</subject><subject>DEVBIO</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair - physiology</subject><subject>DNA, Helminth - genetics</subject><subject>DNA, Helminth - metabolism</subject><subject>Double-strand break repair</subject><subject>Genes, Reporter</subject><subject>Genome, Helminth</subject><subject>Genomes</subject><subject>genomics</subject><subject>homologous recombination</subject><subject>Larva</subject><subject>Models, Genetic</subject><subject>Non-homologous end joining</subject><subject>Nuclease</subject><subject>Polymerase Chain Reaction</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Sequence Deletion</subject><subject>Somatic cells</subject><subject>Transgenes - genetics</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1vEzEQhi0EoqHwA7gg3zjt1nZ2_SFOJYW2UgWowNmyvZPgdNdObW-q_HtcJRI3TqPRPO8rzYPQe0paSii_2LZuti0jRLWEt6TrX6AFlUI1pOv6l2hBFCeNkoydoTc5bwmhTCr-Gp1RxTsuhVigcInvo51zwd-gPMX0gOMaX8XZjtD8LMmEAX9OYB7wPeyMT_iHKX-ezCHj67iHFOqEECfAt6HAJvlywMOcfNjgVYthhI2pyBXsYYy7CUJ5i16tzZjh3Wmeo99fv_xa3TR3369vV5d3jeuYKI2VDpZgRP2D0k5KabslE2wgot4NE8YyaZ3oet73rm6cKquscMqYnklil-fo47F3l-LjDLnoyWcH42gCxDlrRdiyF4T0laRH0qWYc4K13iU_mXTQlOhny3qrq2X9bFkTrqvlmvlwap_tBMO_xElrBT4dAag_7j0knZ2H4GDwCVzRQ_T_qf8Lb1yNQg</recordid><startdate>20090825</startdate><enddate>20090825</enddate><creator>Pontier, Daphne B.</creator><creator>Tijsterman, Marcel</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20090825</creationdate><title>A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development</title><author>Pontier, Daphne B. ; Tijsterman, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-b8ce3ea7044114888b43272d07c42a27ab28bc745655c7ab619b9b7c9aa5280b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - growth & development</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Cell cycle</topic><topic>DEVBIO</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair - physiology</topic><topic>DNA, Helminth - genetics</topic><topic>DNA, Helminth - metabolism</topic><topic>Double-strand break repair</topic><topic>Genes, Reporter</topic><topic>Genome, Helminth</topic><topic>Genomes</topic><topic>genomics</topic><topic>homologous recombination</topic><topic>Larva</topic><topic>Models, Genetic</topic><topic>Non-homologous end joining</topic><topic>Nuclease</topic><topic>Polymerase Chain Reaction</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Sequence Deletion</topic><topic>Somatic cells</topic><topic>Transgenes - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pontier, Daphne B.</creatorcontrib><creatorcontrib>Tijsterman, Marcel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pontier, Daphne B.</au><au>Tijsterman, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2009-08-25</date><risdate>2009</risdate><volume>19</volume><issue>16</issue><spage>1384</spage><epage>1388</epage><pages>1384-1388</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs)
[1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) or single-strand annealing (SSA)
[2]. Here, we created a transgenic reporter system in
C. elegans to investigate the relative contribution of these pathways in somatic cells during animal development. Although all three canonical pathways contribute to repair in the soma, in their combined absence, animals develop without growth delay and chromosomal breaks are still efficiently repaired. This residual repair, which we call alternative end-joining, dominates DSB repair only in the absence of NHEJ and resembles SSA, but acts independent of the SSA nuclease XPF and repair proteins from other pathways. The dynamic interplay between repair pathways might be developmentally regulated, because it was lost from terminally differentiated cells in adult animals. Our results demonstrate profound versatility in DSB repair pathways for somatic cells of
C. elegans, which are thus extremely fit to deal with chromosomal breaks.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>19646877</pmid><doi>10.1016/j.cub.2009.06.045</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2009-08, Vol.19 (16), p.1384-1388 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_proquest_miscellaneous_902357005 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Caenorhabditis elegans - genetics Caenorhabditis elegans - growth & development Caenorhabditis elegans Proteins - genetics Cell cycle DEVBIO DNA DNA Breaks, Double-Stranded DNA damage DNA repair DNA Repair - genetics DNA Repair - physiology DNA, Helminth - genetics DNA, Helminth - metabolism Double-strand break repair Genes, Reporter Genome, Helminth Genomes genomics homologous recombination Larva Models, Genetic Non-homologous end joining Nuclease Polymerase Chain Reaction Recombinant Fusion Proteins - physiology Sequence Deletion Somatic cells Transgenes - genetics |
title | A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Network%20of%20Double-Strand%20Break%20Repair%20Pathways%20Governs%20Genome%20Integrity%20during%20C.%20elegans%20Development&rft.jtitle=Current%20biology&rft.au=Pontier,%20Daphne%20B.&rft.date=2009-08-25&rft.volume=19&rft.issue=16&rft.spage=1384&rft.epage=1388&rft.pages=1384-1388&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2009.06.045&rft_dat=%3Cproquest_cross%3E902357005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=902357005&rft_id=info:pmid/19646877&rft_els_id=S0960982209013220&rfr_iscdi=true |