A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development

To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs) [1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2009-08, Vol.19 (16), p.1384-1388
Hauptverfasser: Pontier, Daphne B., Tijsterman, Marcel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1388
container_issue 16
container_start_page 1384
container_title Current biology
container_volume 19
creator Pontier, Daphne B.
Tijsterman, Marcel
description To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs) [1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) or single-strand annealing (SSA) [2]. Here, we created a transgenic reporter system in C. elegans to investigate the relative contribution of these pathways in somatic cells during animal development. Although all three canonical pathways contribute to repair in the soma, in their combined absence, animals develop without growth delay and chromosomal breaks are still efficiently repaired. This residual repair, which we call alternative end-joining, dominates DSB repair only in the absence of NHEJ and resembles SSA, but acts independent of the SSA nuclease XPF and repair proteins from other pathways. The dynamic interplay between repair pathways might be developmentally regulated, because it was lost from terminally differentiated cells in adult animals. Our results demonstrate profound versatility in DSB repair pathways for somatic cells of C. elegans, which are thus extremely fit to deal with chromosomal breaks.
doi_str_mv 10.1016/j.cub.2009.06.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902357005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982209013220</els_id><sourcerecordid>902357005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-b8ce3ea7044114888b43272d07c42a27ab28bc745655c7ab619b9b7c9aa5280b3</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi0EoqHwA7gg3zjt1nZ2_SFOJYW2UgWowNmyvZPgdNdObW-q_HtcJRI3TqPRPO8rzYPQe0paSii_2LZuti0jRLWEt6TrX6AFlUI1pOv6l2hBFCeNkoydoTc5bwmhTCr-Gp1RxTsuhVigcInvo51zwd-gPMX0gOMaX8XZjtD8LMmEAX9OYB7wPeyMT_iHKX-ezCHj67iHFOqEECfAt6HAJvlywMOcfNjgVYthhI2pyBXsYYy7CUJ5i16tzZjh3Wmeo99fv_xa3TR3369vV5d3jeuYKI2VDpZgRP2D0k5KabslE2wgot4NE8YyaZ3oet73rm6cKquscMqYnklil-fo47F3l-LjDLnoyWcH42gCxDlrRdiyF4T0laRH0qWYc4K13iU_mXTQlOhny3qrq2X9bFkTrqvlmvlwap_tBMO_xElrBT4dAag_7j0knZ2H4GDwCVzRQ_T_qf8Lb1yNQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902357005</pqid></control><display><type>article</type><title>A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pontier, Daphne B. ; Tijsterman, Marcel</creator><creatorcontrib>Pontier, Daphne B. ; Tijsterman, Marcel</creatorcontrib><description>To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs) [1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) or single-strand annealing (SSA) [2]. Here, we created a transgenic reporter system in C. elegans to investigate the relative contribution of these pathways in somatic cells during animal development. Although all three canonical pathways contribute to repair in the soma, in their combined absence, animals develop without growth delay and chromosomal breaks are still efficiently repaired. This residual repair, which we call alternative end-joining, dominates DSB repair only in the absence of NHEJ and resembles SSA, but acts independent of the SSA nuclease XPF and repair proteins from other pathways. The dynamic interplay between repair pathways might be developmentally regulated, because it was lost from terminally differentiated cells in adult animals. Our results demonstrate profound versatility in DSB repair pathways for somatic cells of C. elegans, which are thus extremely fit to deal with chromosomal breaks.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2009.06.045</identifier><identifier>PMID: 19646877</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - growth &amp; development ; Caenorhabditis elegans Proteins - genetics ; Cell cycle ; DEVBIO ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA repair ; DNA Repair - genetics ; DNA Repair - physiology ; DNA, Helminth - genetics ; DNA, Helminth - metabolism ; Double-strand break repair ; Genes, Reporter ; Genome, Helminth ; Genomes ; genomics ; homologous recombination ; Larva ; Models, Genetic ; Non-homologous end joining ; Nuclease ; Polymerase Chain Reaction ; Recombinant Fusion Proteins - physiology ; Sequence Deletion ; Somatic cells ; Transgenes - genetics</subject><ispartof>Current biology, 2009-08, Vol.19 (16), p.1384-1388</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-b8ce3ea7044114888b43272d07c42a27ab28bc745655c7ab619b9b7c9aa5280b3</citedby><cites>FETCH-LOGICAL-c427t-b8ce3ea7044114888b43272d07c42a27ab28bc745655c7ab619b9b7c9aa5280b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982209013220$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19646877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pontier, Daphne B.</creatorcontrib><creatorcontrib>Tijsterman, Marcel</creatorcontrib><title>A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs) [1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) or single-strand annealing (SSA) [2]. Here, we created a transgenic reporter system in C. elegans to investigate the relative contribution of these pathways in somatic cells during animal development. Although all three canonical pathways contribute to repair in the soma, in their combined absence, animals develop without growth delay and chromosomal breaks are still efficiently repaired. This residual repair, which we call alternative end-joining, dominates DSB repair only in the absence of NHEJ and resembles SSA, but acts independent of the SSA nuclease XPF and repair proteins from other pathways. The dynamic interplay between repair pathways might be developmentally regulated, because it was lost from terminally differentiated cells in adult animals. Our results demonstrate profound versatility in DSB repair pathways for somatic cells of C. elegans, which are thus extremely fit to deal with chromosomal breaks.</description><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - growth &amp; development</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Cell cycle</subject><subject>DEVBIO</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair - physiology</subject><subject>DNA, Helminth - genetics</subject><subject>DNA, Helminth - metabolism</subject><subject>Double-strand break repair</subject><subject>Genes, Reporter</subject><subject>Genome, Helminth</subject><subject>Genomes</subject><subject>genomics</subject><subject>homologous recombination</subject><subject>Larva</subject><subject>Models, Genetic</subject><subject>Non-homologous end joining</subject><subject>Nuclease</subject><subject>Polymerase Chain Reaction</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Sequence Deletion</subject><subject>Somatic cells</subject><subject>Transgenes - genetics</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1vEzEQhi0EoqHwA7gg3zjt1nZ2_SFOJYW2UgWowNmyvZPgdNdObW-q_HtcJRI3TqPRPO8rzYPQe0paSii_2LZuti0jRLWEt6TrX6AFlUI1pOv6l2hBFCeNkoydoTc5bwmhTCr-Gp1RxTsuhVigcInvo51zwd-gPMX0gOMaX8XZjtD8LMmEAX9OYB7wPeyMT_iHKX-ezCHj67iHFOqEECfAt6HAJvlywMOcfNjgVYthhI2pyBXsYYy7CUJ5i16tzZjh3Wmeo99fv_xa3TR3369vV5d3jeuYKI2VDpZgRP2D0k5KabslE2wgot4NE8YyaZ3oet73rm6cKquscMqYnklil-fo47F3l-LjDLnoyWcH42gCxDlrRdiyF4T0laRH0qWYc4K13iU_mXTQlOhny3qrq2X9bFkTrqvlmvlwap_tBMO_xElrBT4dAag_7j0knZ2H4GDwCVzRQ_T_qf8Lb1yNQg</recordid><startdate>20090825</startdate><enddate>20090825</enddate><creator>Pontier, Daphne B.</creator><creator>Tijsterman, Marcel</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20090825</creationdate><title>A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development</title><author>Pontier, Daphne B. ; Tijsterman, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-b8ce3ea7044114888b43272d07c42a27ab28bc745655c7ab619b9b7c9aa5280b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - growth &amp; development</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Cell cycle</topic><topic>DEVBIO</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair - physiology</topic><topic>DNA, Helminth - genetics</topic><topic>DNA, Helminth - metabolism</topic><topic>Double-strand break repair</topic><topic>Genes, Reporter</topic><topic>Genome, Helminth</topic><topic>Genomes</topic><topic>genomics</topic><topic>homologous recombination</topic><topic>Larva</topic><topic>Models, Genetic</topic><topic>Non-homologous end joining</topic><topic>Nuclease</topic><topic>Polymerase Chain Reaction</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Sequence Deletion</topic><topic>Somatic cells</topic><topic>Transgenes - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pontier, Daphne B.</creatorcontrib><creatorcontrib>Tijsterman, Marcel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pontier, Daphne B.</au><au>Tijsterman, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2009-08-25</date><risdate>2009</risdate><volume>19</volume><issue>16</issue><spage>1384</spage><epage>1388</epage><pages>1384-1388</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs) [1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) or single-strand annealing (SSA) [2]. Here, we created a transgenic reporter system in C. elegans to investigate the relative contribution of these pathways in somatic cells during animal development. Although all three canonical pathways contribute to repair in the soma, in their combined absence, animals develop without growth delay and chromosomal breaks are still efficiently repaired. This residual repair, which we call alternative end-joining, dominates DSB repair only in the absence of NHEJ and resembles SSA, but acts independent of the SSA nuclease XPF and repair proteins from other pathways. The dynamic interplay between repair pathways might be developmentally regulated, because it was lost from terminally differentiated cells in adult animals. Our results demonstrate profound versatility in DSB repair pathways for somatic cells of C. elegans, which are thus extremely fit to deal with chromosomal breaks.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>19646877</pmid><doi>10.1016/j.cub.2009.06.045</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2009-08, Vol.19 (16), p.1384-1388
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_902357005
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
Caenorhabditis elegans - genetics
Caenorhabditis elegans - growth & development
Caenorhabditis elegans Proteins - genetics
Cell cycle
DEVBIO
DNA
DNA Breaks, Double-Stranded
DNA damage
DNA repair
DNA Repair - genetics
DNA Repair - physiology
DNA, Helminth - genetics
DNA, Helminth - metabolism
Double-strand break repair
Genes, Reporter
Genome, Helminth
Genomes
genomics
homologous recombination
Larva
Models, Genetic
Non-homologous end joining
Nuclease
Polymerase Chain Reaction
Recombinant Fusion Proteins - physiology
Sequence Deletion
Somatic cells
Transgenes - genetics
title A Robust Network of Double-Strand Break Repair Pathways Governs Genome Integrity during C. elegans Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Network%20of%20Double-Strand%20Break%20Repair%20Pathways%20Governs%20Genome%20Integrity%20during%20C.%20elegans%20Development&rft.jtitle=Current%20biology&rft.au=Pontier,%20Daphne%20B.&rft.date=2009-08-25&rft.volume=19&rft.issue=16&rft.spage=1384&rft.epage=1388&rft.pages=1384-1388&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2009.06.045&rft_dat=%3Cproquest_cross%3E902357005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=902357005&rft_id=info:pmid/19646877&rft_els_id=S0960982209013220&rfr_iscdi=true