Length of near-wall plumes in turbulent convection

We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers ($1{0}^{5} \lt \mathit{Ra}\lt 1{0}^{11} $) and at three Prandtl numbers ($\mathit{Pr}= 0. 7, 5. 2,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2011-10, Vol.685, p.335-364
Hauptverfasser: Puthenveettil, Baburaj A., Gunasegarane, G. S., Agrawal, Yogesh K., Schmeling, Daniel, Bosbach, Johannes, Arakeri, Jaywant H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue
container_start_page 335
container_title Journal of fluid mechanics
container_volume 685
creator Puthenveettil, Baburaj A.
Gunasegarane, G. S.
Agrawal, Yogesh K.
Schmeling, Daniel
Bosbach, Johannes
Arakeri, Jaywant H.
description We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers ($1{0}^{5} \lt \mathit{Ra}\lt 1{0}^{11} $) and at three Prandtl numbers ($\mathit{Pr}= 0. 7, 5. 2, 602$). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (${L}_{p} / A$), made dimensionless by the near-wall length scale in turbulent convection (${Z}_{w} $), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to ${L}_{p} H/ A$ for a given fluid layer of height $H$. The increase in $\mathit{Pr}$ has a weak influence in decreasing ${L}_{p} / A$. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.
doi_str_mv 10.1017/jfm.2011.319
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902355147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2011_319</cupid><sourcerecordid>2477400421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-c057945e73e4d55899775a8557627eac6ebaacc2737218e4058bc265fcf39b5b3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOI7u_IAiiC5szfs2Sxl8wYAbXYc0k44d0nRMWsW_t8MMCiIuwt2cey45CJ0SXBBM4HpVtwXFhBSMqD00IVyqHCQX-2iCMaU5IRQfoqOUVhgThhVMEJ27sOxfs67OgjMx_zDeZ2s_tC5lTcj6IVaDd6HPbBfene2bLhyjg9r45E52c4pe7m6fZw_5_On-cXYzzy1Tss8tFqC4cMAcXwhRKgUgTCkESArOWOkqY6ylwICS0nEsyspSKWpbM1WJik3Rxda7jt3b4FKv2yZZ570JrhuSVpgyIQiHkbz8lySSU4aZHN8Unf1CV90Qw_gPXSrJAUooR-hqC9nYpRRdrdexaU381ATrTWk9ltab0nosPeLnO6dJ1vg6mmCb9L1DuWSAYcMVO61pq9gslu7n-J_iL7dEirk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896477878</pqid></control><display><type>article</type><title>Length of near-wall plumes in turbulent convection</title><source>Cambridge University Press Journals Complete</source><creator>Puthenveettil, Baburaj A. ; Gunasegarane, G. S. ; Agrawal, Yogesh K. ; Schmeling, Daniel ; Bosbach, Johannes ; Arakeri, Jaywant H.</creator><creatorcontrib>Puthenveettil, Baburaj A. ; Gunasegarane, G. S. ; Agrawal, Yogesh K. ; Schmeling, Daniel ; Bosbach, Johannes ; Arakeri, Jaywant H.</creatorcontrib><description>We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers ($1{0}^{5} \lt \mathit{Ra}\lt 1{0}^{11} $) and at three Prandtl numbers ($\mathit{Pr}= 0. 7, 5. 2, 602$). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (${L}_{p} / A$), made dimensionless by the near-wall length scale in turbulent convection (${Z}_{w} $), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to ${L}_{p} H/ A$ for a given fluid layer of height $H$. The increase in $\mathit{Pr}$ has a weak influence in decreasing ${L}_{p} / A$. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2011.319</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer and shear turbulence ; Boundary layers ; Convection ; Convection and heat transfer ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluids ; Fundamental areas of phenomenology (including applications) ; Heat conductivity ; Horizontal ; Physics ; Plumes ; Thermal energy ; Turbulence ; Turbulent flow ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2011-10, Vol.685, p.335-364</ispartof><rights>Copyright © Cambridge University Press 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © Cambridge University Press 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-c057945e73e4d55899775a8557627eac6ebaacc2737218e4058bc265fcf39b5b3</citedby><cites>FETCH-LOGICAL-c396t-c057945e73e4d55899775a8557627eac6ebaacc2737218e4058bc265fcf39b5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112011003193/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24637079$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Puthenveettil, Baburaj A.</creatorcontrib><creatorcontrib>Gunasegarane, G. S.</creatorcontrib><creatorcontrib>Agrawal, Yogesh K.</creatorcontrib><creatorcontrib>Schmeling, Daniel</creatorcontrib><creatorcontrib>Bosbach, Johannes</creatorcontrib><creatorcontrib>Arakeri, Jaywant H.</creatorcontrib><title>Length of near-wall plumes in turbulent convection</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers ($1{0}^{5} \lt \mathit{Ra}\lt 1{0}^{11} $) and at three Prandtl numbers ($\mathit{Pr}= 0. 7, 5. 2, 602$). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (${L}_{p} / A$), made dimensionless by the near-wall length scale in turbulent convection (${Z}_{w} $), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to ${L}_{p} H/ A$ for a given fluid layer of height $H$. The increase in $\mathit{Pr}$ has a weak influence in decreasing ${L}_{p} / A$. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.</description><subject>Boundary layer and shear turbulence</subject><subject>Boundary layers</subject><subject>Convection</subject><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat conductivity</subject><subject>Horizontal</subject><subject>Physics</subject><subject>Plumes</subject><subject>Thermal energy</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKxDAUQIMoOI7u_IAiiC5szfs2Sxl8wYAbXYc0k44d0nRMWsW_t8MMCiIuwt2cey45CJ0SXBBM4HpVtwXFhBSMqD00IVyqHCQX-2iCMaU5IRQfoqOUVhgThhVMEJ27sOxfs67OgjMx_zDeZ2s_tC5lTcj6IVaDd6HPbBfene2bLhyjg9r45E52c4pe7m6fZw_5_On-cXYzzy1Tss8tFqC4cMAcXwhRKgUgTCkESArOWOkqY6ylwICS0nEsyspSKWpbM1WJik3Rxda7jt3b4FKv2yZZ570JrhuSVpgyIQiHkbz8lySSU4aZHN8Unf1CV90Qw_gPXSrJAUooR-hqC9nYpRRdrdexaU381ATrTWk9ltab0nosPeLnO6dJ1vg6mmCb9L1DuWSAYcMVO61pq9gslu7n-J_iL7dEirk</recordid><startdate>20111025</startdate><enddate>20111025</enddate><creator>Puthenveettil, Baburaj A.</creator><creator>Gunasegarane, G. S.</creator><creator>Agrawal, Yogesh K.</creator><creator>Schmeling, Daniel</creator><creator>Bosbach, Johannes</creator><creator>Arakeri, Jaywant H.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20111025</creationdate><title>Length of near-wall plumes in turbulent convection</title><author>Puthenveettil, Baburaj A. ; Gunasegarane, G. S. ; Agrawal, Yogesh K. ; Schmeling, Daniel ; Bosbach, Johannes ; Arakeri, Jaywant H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-c057945e73e4d55899775a8557627eac6ebaacc2737218e4058bc265fcf39b5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary layer and shear turbulence</topic><topic>Boundary layers</topic><topic>Convection</topic><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat conductivity</topic><topic>Horizontal</topic><topic>Physics</topic><topic>Plumes</topic><topic>Thermal energy</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puthenveettil, Baburaj A.</creatorcontrib><creatorcontrib>Gunasegarane, G. S.</creatorcontrib><creatorcontrib>Agrawal, Yogesh K.</creatorcontrib><creatorcontrib>Schmeling, Daniel</creatorcontrib><creatorcontrib>Bosbach, Johannes</creatorcontrib><creatorcontrib>Arakeri, Jaywant H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library (ProQuest Database)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puthenveettil, Baburaj A.</au><au>Gunasegarane, G. S.</au><au>Agrawal, Yogesh K.</au><au>Schmeling, Daniel</au><au>Bosbach, Johannes</au><au>Arakeri, Jaywant H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Length of near-wall plumes in turbulent convection</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2011-10-25</date><risdate>2011</risdate><volume>685</volume><spage>335</spage><epage>364</epage><pages>335-364</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers ($1{0}^{5} \lt \mathit{Ra}\lt 1{0}^{11} $) and at three Prandtl numbers ($\mathit{Pr}= 0. 7, 5. 2, 602$). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (${L}_{p} / A$), made dimensionless by the near-wall length scale in turbulent convection (${Z}_{w} $), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to ${L}_{p} H/ A$ for a given fluid layer of height $H$. The increase in $\mathit{Pr}$ has a weak influence in decreasing ${L}_{p} / A$. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2011.319</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2011-10, Vol.685, p.335-364
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_902355147
source Cambridge University Press Journals Complete
subjects Boundary layer and shear turbulence
Boundary layers
Convection
Convection and heat transfer
Exact sciences and technology
Fluid dynamics
Fluid flow
Fluids
Fundamental areas of phenomenology (including applications)
Heat conductivity
Horizontal
Physics
Plumes
Thermal energy
Turbulence
Turbulent flow
Turbulent flows, convection, and heat transfer
title Length of near-wall plumes in turbulent convection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Length%20of%20near-wall%20plumes%20in%20turbulent%20convection&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Puthenveettil,%20Baburaj%20A.&rft.date=2011-10-25&rft.volume=685&rft.spage=335&rft.epage=364&rft.pages=335-364&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2011.319&rft_dat=%3Cproquest_cross%3E2477400421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896477878&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2011_319&rfr_iscdi=true