Length of near-wall plumes in turbulent convection
We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers ($1{0}^{5} \lt \mathit{Ra}\lt 1{0}^{11} $) and at three Prandtl numbers ($\mathit{Pr}= 0. 7, 5. 2,...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2011-10, Vol.685, p.335-364 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | |
container_start_page | 335 |
container_title | Journal of fluid mechanics |
container_volume | 685 |
creator | Puthenveettil, Baburaj A. Gunasegarane, G. S. Agrawal, Yogesh K. Schmeling, Daniel Bosbach, Johannes Arakeri, Jaywant H. |
description | We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers ($1{0}^{5} \lt \mathit{Ra}\lt 1{0}^{11} $) and at three Prandtl numbers ($\mathit{Pr}= 0. 7, 5. 2, 602$). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (${L}_{p} / A$), made dimensionless by the near-wall length scale in turbulent convection (${Z}_{w} $), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to ${L}_{p} H/ A$ for a given fluid layer of height $H$. The increase in $\mathit{Pr}$ has a weak influence in decreasing ${L}_{p} / A$. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces. |
doi_str_mv | 10.1017/jfm.2011.319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902355147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2011_319</cupid><sourcerecordid>2477400421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-c057945e73e4d55899775a8557627eac6ebaacc2737218e4058bc265fcf39b5b3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOI7u_IAiiC5szfs2Sxl8wYAbXYc0k44d0nRMWsW_t8MMCiIuwt2cey45CJ0SXBBM4HpVtwXFhBSMqD00IVyqHCQX-2iCMaU5IRQfoqOUVhgThhVMEJ27sOxfs67OgjMx_zDeZ2s_tC5lTcj6IVaDd6HPbBfene2bLhyjg9r45E52c4pe7m6fZw_5_On-cXYzzy1Tss8tFqC4cMAcXwhRKgUgTCkESArOWOkqY6ylwICS0nEsyspSKWpbM1WJik3Rxda7jt3b4FKv2yZZ570JrhuSVpgyIQiHkbz8lySSU4aZHN8Unf1CV90Qw_gPXSrJAUooR-hqC9nYpRRdrdexaU381ATrTWk9ltab0nosPeLnO6dJ1vg6mmCb9L1DuWSAYcMVO61pq9gslu7n-J_iL7dEirk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896477878</pqid></control><display><type>article</type><title>Length of near-wall plumes in turbulent convection</title><source>Cambridge University Press Journals Complete</source><creator>Puthenveettil, Baburaj A. ; Gunasegarane, G. S. ; Agrawal, Yogesh K. ; Schmeling, Daniel ; Bosbach, Johannes ; Arakeri, Jaywant H.</creator><creatorcontrib>Puthenveettil, Baburaj A. ; Gunasegarane, G. S. ; Agrawal, Yogesh K. ; Schmeling, Daniel ; Bosbach, Johannes ; Arakeri, Jaywant H.</creatorcontrib><description>We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers ($1{0}^{5} \lt \mathit{Ra}\lt 1{0}^{11} $) and at three Prandtl numbers ($\mathit{Pr}= 0. 7, 5. 2, 602$). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (${L}_{p} / A$), made dimensionless by the near-wall length scale in turbulent convection (${Z}_{w} $), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to ${L}_{p} H/ A$ for a given fluid layer of height $H$. The increase in $\mathit{Pr}$ has a weak influence in decreasing ${L}_{p} / A$. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2011.319</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer and shear turbulence ; Boundary layers ; Convection ; Convection and heat transfer ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluids ; Fundamental areas of phenomenology (including applications) ; Heat conductivity ; Horizontal ; Physics ; Plumes ; Thermal energy ; Turbulence ; Turbulent flow ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2011-10, Vol.685, p.335-364</ispartof><rights>Copyright © Cambridge University Press 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © Cambridge University Press 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-c057945e73e4d55899775a8557627eac6ebaacc2737218e4058bc265fcf39b5b3</citedby><cites>FETCH-LOGICAL-c396t-c057945e73e4d55899775a8557627eac6ebaacc2737218e4058bc265fcf39b5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112011003193/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24637079$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Puthenveettil, Baburaj A.</creatorcontrib><creatorcontrib>Gunasegarane, G. S.</creatorcontrib><creatorcontrib>Agrawal, Yogesh K.</creatorcontrib><creatorcontrib>Schmeling, Daniel</creatorcontrib><creatorcontrib>Bosbach, Johannes</creatorcontrib><creatorcontrib>Arakeri, Jaywant H.</creatorcontrib><title>Length of near-wall plumes in turbulent convection</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers ($1{0}^{5} \lt \mathit{Ra}\lt 1{0}^{11} $) and at three Prandtl numbers ($\mathit{Pr}= 0. 7, 5. 2, 602$). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (${L}_{p} / A$), made dimensionless by the near-wall length scale in turbulent convection (${Z}_{w} $), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to ${L}_{p} H/ A$ for a given fluid layer of height $H$. The increase in $\mathit{Pr}$ has a weak influence in decreasing ${L}_{p} / A$. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.</description><subject>Boundary layer and shear turbulence</subject><subject>Boundary layers</subject><subject>Convection</subject><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat conductivity</subject><subject>Horizontal</subject><subject>Physics</subject><subject>Plumes</subject><subject>Thermal energy</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKxDAUQIMoOI7u_IAiiC5szfs2Sxl8wYAbXYc0k44d0nRMWsW_t8MMCiIuwt2cey45CJ0SXBBM4HpVtwXFhBSMqD00IVyqHCQX-2iCMaU5IRQfoqOUVhgThhVMEJ27sOxfs67OgjMx_zDeZ2s_tC5lTcj6IVaDd6HPbBfene2bLhyjg9r45E52c4pe7m6fZw_5_On-cXYzzy1Tss8tFqC4cMAcXwhRKgUgTCkESArOWOkqY6ylwICS0nEsyspSKWpbM1WJik3Rxda7jt3b4FKv2yZZ570JrhuSVpgyIQiHkbz8lySSU4aZHN8Unf1CV90Qw_gPXSrJAUooR-hqC9nYpRRdrdexaU381ATrTWk9ltab0nosPeLnO6dJ1vg6mmCb9L1DuWSAYcMVO61pq9gslu7n-J_iL7dEirk</recordid><startdate>20111025</startdate><enddate>20111025</enddate><creator>Puthenveettil, Baburaj A.</creator><creator>Gunasegarane, G. S.</creator><creator>Agrawal, Yogesh K.</creator><creator>Schmeling, Daniel</creator><creator>Bosbach, Johannes</creator><creator>Arakeri, Jaywant H.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20111025</creationdate><title>Length of near-wall plumes in turbulent convection</title><author>Puthenveettil, Baburaj A. ; Gunasegarane, G. S. ; Agrawal, Yogesh K. ; Schmeling, Daniel ; Bosbach, Johannes ; Arakeri, Jaywant H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-c057945e73e4d55899775a8557627eac6ebaacc2737218e4058bc265fcf39b5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary layer and shear turbulence</topic><topic>Boundary layers</topic><topic>Convection</topic><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat conductivity</topic><topic>Horizontal</topic><topic>Physics</topic><topic>Plumes</topic><topic>Thermal energy</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puthenveettil, Baburaj A.</creatorcontrib><creatorcontrib>Gunasegarane, G. S.</creatorcontrib><creatorcontrib>Agrawal, Yogesh K.</creatorcontrib><creatorcontrib>Schmeling, Daniel</creatorcontrib><creatorcontrib>Bosbach, Johannes</creatorcontrib><creatorcontrib>Arakeri, Jaywant H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library (ProQuest Database)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puthenveettil, Baburaj A.</au><au>Gunasegarane, G. S.</au><au>Agrawal, Yogesh K.</au><au>Schmeling, Daniel</au><au>Bosbach, Johannes</au><au>Arakeri, Jaywant H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Length of near-wall plumes in turbulent convection</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2011-10-25</date><risdate>2011</risdate><volume>685</volume><spage>335</spage><epage>364</epage><pages>335-364</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers ($1{0}^{5} \lt \mathit{Ra}\lt 1{0}^{11} $) and at three Prandtl numbers ($\mathit{Pr}= 0. 7, 5. 2, 602$). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (${L}_{p} / A$), made dimensionless by the near-wall length scale in turbulent convection (${Z}_{w} $), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to ${L}_{p} H/ A$ for a given fluid layer of height $H$. The increase in $\mathit{Pr}$ has a weak influence in decreasing ${L}_{p} / A$. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2011.319</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2011-10, Vol.685, p.335-364 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_902355147 |
source | Cambridge University Press Journals Complete |
subjects | Boundary layer and shear turbulence Boundary layers Convection Convection and heat transfer Exact sciences and technology Fluid dynamics Fluid flow Fluids Fundamental areas of phenomenology (including applications) Heat conductivity Horizontal Physics Plumes Thermal energy Turbulence Turbulent flow Turbulent flows, convection, and heat transfer |
title | Length of near-wall plumes in turbulent convection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Length%20of%20near-wall%20plumes%20in%20turbulent%20convection&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Puthenveettil,%20Baburaj%20A.&rft.date=2011-10-25&rft.volume=685&rft.spage=335&rft.epage=364&rft.pages=335-364&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2011.319&rft_dat=%3Cproquest_cross%3E2477400421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896477878&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2011_319&rfr_iscdi=true |