The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans

The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain Structure and Function 2010-06, Vol.214 (5-6), p.495-517
Hauptverfasser: Allman, John M., Tetreault, Nicole A., Hakeem, Atiya Y., Manaye, Kebreten F., Semendeferi, Katerina, Erwin, Joseph M., Park, Soyoung, Goubert, Virginie, Hof, Patrick R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue 5-6
container_start_page 495
container_title Brain Structure and Function
container_volume 214
creator Allman, John M.
Tetreault, Nicole A.
Hakeem, Atiya Y.
Manaye, Kebreten F.
Semendeferi, Katerina
Erwin, Joseph M.
Park, Soyoung
Goubert, Virginie
Hof, Patrick R.
description The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in t
doi_str_mv 10.1007/s00429-010-0254-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902351653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733353505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646t-3bcd147ec211ed786b58cf50c62953af86840514c9e73ea92e450aa8a779f8993</originalsourceid><addsrcrecordid>eNqFkctOBCEQRYnR-P4AN4a4cdVaQNPA0hhfiYkbXROGqR7bTMMI3Ub_XsbxkZgYFxUqcOpWUZeQAwYnDECdZoCamwoYVMBlXcEa2Wa6ERVvGrb-nUuxRXZyfgKQRjOzSbY4SMaFUtvE3j8ifYmBXvgYYh9pwDHFkGkXaFuSIXYhj3OXqAvTEgOmLibquzArtwNSH9OAr0t8ltAN1C0wf7CPY-9C3iMbrZtn3P88d8nD5cX9-XV1e3d1c352W_mmboZKTPyU1Qo9ZwynSjcTqX0rwTfcSOFa3ei6zFx7g0qgMxxrCc5pp5RptTFilxyvdBcpPo-YB9t32eN87gLGMVsDXEhWVvEvqbUAUUvB_yWVEEIKCbKQR7_IpzimUD5stdIgDHyMyFaQTzHnhK1dpK536c0ysEs_7cpPW_y0Sz8tlJrDT-Fx0uP0u-LLwALwFZDLU5hh-un8t-o7DAKplw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878039099</pqid></control><display><type>article</type><title>The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Allman, John M. ; Tetreault, Nicole A. ; Hakeem, Atiya Y. ; Manaye, Kebreten F. ; Semendeferi, Katerina ; Erwin, Joseph M. ; Park, Soyoung ; Goubert, Virginie ; Hof, Patrick R.</creator><creatorcontrib>Allman, John M. ; Tetreault, Nicole A. ; Hakeem, Atiya Y. ; Manaye, Kebreten F. ; Semendeferi, Katerina ; Erwin, Joseph M. ; Park, Soyoung ; Goubert, Virginie ; Hof, Patrick R.</creatorcontrib><description>The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in the line leading to humans, and since it suppresses dendritic branching it may be involved in the distinctive VEN morphology.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-010-0254-0</identifier><identifier>PMID: 20512377</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject><![CDATA[Amygdala ; Animals ; Appetite ; Asymmetry ; Autonomic nervous system ; Autonomic Nervous System - cytology ; Autonomic Nervous System - growth & development ; Biomedical and Life Sciences ; Biomedicine ; Bombesin ; Brain ; Brain research ; Cell Biology ; Cerebral Cortex - cytology ; Cerebral Cortex - growth & development ; Cortex (cingulate) ; Cortex (frontal) ; Cortex (insular) ; Decision making ; Dendritic branching ; DISC1 protein ; Evolution ; Frontal Lobe - cytology ; Frontal Lobe - growth & development ; Frontotemporal dementia ; Functional anatomy ; Functional Laterality - physiology ; Gastrin ; Gyrus Cinguli - cytology ; Gyrus Cinguli - growth & development ; Hemispheric laterality ; Hominidae - anatomy & histology ; Hominidae - physiology ; Humans ; Magnetic resonance imaging ; Mental disorders ; Monkeys & apes ; Neuroimaging ; Neurology ; Neuromedin ; Neurons ; Neurons - cytology ; Neurons - physiology ; Neurosciences ; Original Article ; Primates ; Satiety ; Schizophrenia ; Septum ; Specialization ; Species Specificity ; Structure-function relationships]]></subject><ispartof>Brain Structure and Function, 2010-06, Vol.214 (5-6), p.495-517</ispartof><rights>The Author(s) 2010</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c646t-3bcd147ec211ed786b58cf50c62953af86840514c9e73ea92e450aa8a779f8993</citedby><cites>FETCH-LOGICAL-c646t-3bcd147ec211ed786b58cf50c62953af86840514c9e73ea92e450aa8a779f8993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-010-0254-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-010-0254-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20512377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allman, John M.</creatorcontrib><creatorcontrib>Tetreault, Nicole A.</creatorcontrib><creatorcontrib>Hakeem, Atiya Y.</creatorcontrib><creatorcontrib>Manaye, Kebreten F.</creatorcontrib><creatorcontrib>Semendeferi, Katerina</creatorcontrib><creatorcontrib>Erwin, Joseph M.</creatorcontrib><creatorcontrib>Park, Soyoung</creatorcontrib><creatorcontrib>Goubert, Virginie</creatorcontrib><creatorcontrib>Hof, Patrick R.</creatorcontrib><title>The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in the line leading to humans, and since it suppresses dendritic branching it may be involved in the distinctive VEN morphology.</description><subject>Amygdala</subject><subject>Animals</subject><subject>Appetite</subject><subject>Asymmetry</subject><subject>Autonomic nervous system</subject><subject>Autonomic Nervous System - cytology</subject><subject>Autonomic Nervous System - growth &amp; development</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bombesin</subject><subject>Brain</subject><subject>Brain research</subject><subject>Cell Biology</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - growth &amp; development</subject><subject>Cortex (cingulate)</subject><subject>Cortex (frontal)</subject><subject>Cortex (insular)</subject><subject>Decision making</subject><subject>Dendritic branching</subject><subject>DISC1 protein</subject><subject>Evolution</subject><subject>Frontal Lobe - cytology</subject><subject>Frontal Lobe - growth &amp; development</subject><subject>Frontotemporal dementia</subject><subject>Functional anatomy</subject><subject>Functional Laterality - physiology</subject><subject>Gastrin</subject><subject>Gyrus Cinguli - cytology</subject><subject>Gyrus Cinguli - growth &amp; development</subject><subject>Hemispheric laterality</subject><subject>Hominidae - anatomy &amp; histology</subject><subject>Hominidae - physiology</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Mental disorders</subject><subject>Monkeys &amp; apes</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neuromedin</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Primates</subject><subject>Satiety</subject><subject>Schizophrenia</subject><subject>Septum</subject><subject>Specialization</subject><subject>Species Specificity</subject><subject>Structure-function relationships</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctOBCEQRYnR-P4AN4a4cdVaQNPA0hhfiYkbXROGqR7bTMMI3Ub_XsbxkZgYFxUqcOpWUZeQAwYnDECdZoCamwoYVMBlXcEa2Wa6ERVvGrb-nUuxRXZyfgKQRjOzSbY4SMaFUtvE3j8ifYmBXvgYYh9pwDHFkGkXaFuSIXYhj3OXqAvTEgOmLibquzArtwNSH9OAr0t8ltAN1C0wf7CPY-9C3iMbrZtn3P88d8nD5cX9-XV1e3d1c352W_mmboZKTPyU1Qo9ZwynSjcTqX0rwTfcSOFa3ei6zFx7g0qgMxxrCc5pp5RptTFilxyvdBcpPo-YB9t32eN87gLGMVsDXEhWVvEvqbUAUUvB_yWVEEIKCbKQR7_IpzimUD5stdIgDHyMyFaQTzHnhK1dpK536c0ysEs_7cpPW_y0Sz8tlJrDT-Fx0uP0u-LLwALwFZDLU5hh-un8t-o7DAKplw</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Allman, John M.</creator><creator>Tetreault, Nicole A.</creator><creator>Hakeem, Atiya Y.</creator><creator>Manaye, Kebreten F.</creator><creator>Semendeferi, Katerina</creator><creator>Erwin, Joseph M.</creator><creator>Park, Soyoung</creator><creator>Goubert, Virginie</creator><creator>Hof, Patrick R.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20100601</creationdate><title>The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans</title><author>Allman, John M. ; Tetreault, Nicole A. ; Hakeem, Atiya Y. ; Manaye, Kebreten F. ; Semendeferi, Katerina ; Erwin, Joseph M. ; Park, Soyoung ; Goubert, Virginie ; Hof, Patrick R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646t-3bcd147ec211ed786b58cf50c62953af86840514c9e73ea92e450aa8a779f8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amygdala</topic><topic>Animals</topic><topic>Appetite</topic><topic>Asymmetry</topic><topic>Autonomic nervous system</topic><topic>Autonomic Nervous System - cytology</topic><topic>Autonomic Nervous System - growth &amp; development</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bombesin</topic><topic>Brain</topic><topic>Brain research</topic><topic>Cell Biology</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - growth &amp; development</topic><topic>Cortex (cingulate)</topic><topic>Cortex (frontal)</topic><topic>Cortex (insular)</topic><topic>Decision making</topic><topic>Dendritic branching</topic><topic>DISC1 protein</topic><topic>Evolution</topic><topic>Frontal Lobe - cytology</topic><topic>Frontal Lobe - growth &amp; development</topic><topic>Frontotemporal dementia</topic><topic>Functional anatomy</topic><topic>Functional Laterality - physiology</topic><topic>Gastrin</topic><topic>Gyrus Cinguli - cytology</topic><topic>Gyrus Cinguli - growth &amp; development</topic><topic>Hemispheric laterality</topic><topic>Hominidae - anatomy &amp; histology</topic><topic>Hominidae - physiology</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Mental disorders</topic><topic>Monkeys &amp; apes</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neuromedin</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Primates</topic><topic>Satiety</topic><topic>Schizophrenia</topic><topic>Septum</topic><topic>Specialization</topic><topic>Species Specificity</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allman, John M.</creatorcontrib><creatorcontrib>Tetreault, Nicole A.</creatorcontrib><creatorcontrib>Hakeem, Atiya Y.</creatorcontrib><creatorcontrib>Manaye, Kebreten F.</creatorcontrib><creatorcontrib>Semendeferi, Katerina</creatorcontrib><creatorcontrib>Erwin, Joseph M.</creatorcontrib><creatorcontrib>Park, Soyoung</creatorcontrib><creatorcontrib>Goubert, Virginie</creatorcontrib><creatorcontrib>Hof, Patrick R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allman, John M.</au><au>Tetreault, Nicole A.</au><au>Hakeem, Atiya Y.</au><au>Manaye, Kebreten F.</au><au>Semendeferi, Katerina</au><au>Erwin, Joseph M.</au><au>Park, Soyoung</au><au>Goubert, Virginie</au><au>Hof, Patrick R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>214</volume><issue>5-6</issue><spage>495</spage><epage>517</epage><pages>495-517</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in the line leading to humans, and since it suppresses dendritic branching it may be involved in the distinctive VEN morphology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>20512377</pmid><doi>10.1007/s00429-010-0254-0</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2010-06, Vol.214 (5-6), p.495-517
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_proquest_miscellaneous_902351653
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Amygdala
Animals
Appetite
Asymmetry
Autonomic nervous system
Autonomic Nervous System - cytology
Autonomic Nervous System - growth & development
Biomedical and Life Sciences
Biomedicine
Bombesin
Brain
Brain research
Cell Biology
Cerebral Cortex - cytology
Cerebral Cortex - growth & development
Cortex (cingulate)
Cortex (frontal)
Cortex (insular)
Decision making
Dendritic branching
DISC1 protein
Evolution
Frontal Lobe - cytology
Frontal Lobe - growth & development
Frontotemporal dementia
Functional anatomy
Functional Laterality - physiology
Gastrin
Gyrus Cinguli - cytology
Gyrus Cinguli - growth & development
Hemispheric laterality
Hominidae - anatomy & histology
Hominidae - physiology
Humans
Magnetic resonance imaging
Mental disorders
Monkeys & apes
Neuroimaging
Neurology
Neuromedin
Neurons
Neurons - cytology
Neurons - physiology
Neurosciences
Original Article
Primates
Satiety
Schizophrenia
Septum
Specialization
Species Specificity
Structure-function relationships
title The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20von%20Economo%20neurons%20in%20frontoinsular%20and%20anterior%20cingulate%20cortex%20in%20great%20apes%20and%20humans&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Allman,%20John%20M.&rft.date=2010-06-01&rft.volume=214&rft.issue=5-6&rft.spage=495&rft.epage=517&rft.pages=495-517&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-010-0254-0&rft_dat=%3Cproquest_cross%3E733353505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=878039099&rft_id=info:pmid/20512377&rfr_iscdi=true