Glycine max non-nodulation locus rj1: a recombinogenic region encompassing a SNP in a lysine motif receptor-like kinase (GmNFR1α)

The rj1 mutation of soybean is a simple recessive allele in a single line that arose as a spontaneous mutation in a population; it exhibits non-nodulation with virtually all Bradyrhizobium and Sinorhizobium strains. Here, we described fine genetic and physical mapping of the rj1 locus on soybean chr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2011-03, Vol.122 (5), p.875-884
Hauptverfasser: Lee, Woo Kyu, Jeong, Namhee, Indrasumunar, Arief, Gresshoff, Peter M, Jeong, Soon-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 884
container_issue 5
container_start_page 875
container_title Theoretical and applied genetics
container_volume 122
creator Lee, Woo Kyu
Jeong, Namhee
Indrasumunar, Arief
Gresshoff, Peter M
Jeong, Soon-Chun
description The rj1 mutation of soybean is a simple recessive allele in a single line that arose as a spontaneous mutation in a population; it exhibits non-nodulation with virtually all Bradyrhizobium and Sinorhizobium strains. Here, we described fine genetic and physical mapping of the rj1 locus on soybean chromosome 2. The initial mapping of the rj1 locus using public markers indicated that A343.p2, a sequence-based marker that contains sequence similar to a part of the LjNFR1 gene regulating nodule formation as a member of lysin motif-type receptor-like kinase (LYK) family, maps very close to or cosegregates with the rj1 locus. The sequence of A343.p2 is 100% identical to parts of two BAC clone sequences (GM_WBb0002O19 and GM_WBb098N11) that contain three members of the LYK family. We analyzed the sequence contig (262 kbp) of the two BAC clones by resequencing and subsequent fine genetic and physical mapping. The results indicated that rj1 is located in a gene-rich region with a recombination rate of 120 kbp/cM: several fold higher than the genome average. Among the LYK genes, NFR1α is most likely the gene encoded at the Rj1 locus. The non-nodulating rj1 allele was created by a single base-pair deletion that results in a premature stop codon. Taken together, the fine genetic and physical mapping of the Rj1-residing chromosomal region, combined with the unexpected observation of a putative recombination hotspot, allowed us to demonstrate that the Rj1 locus most likely encodes the NFR1α gene.
doi_str_mv 10.1007/s00122-010-1493-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902348814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>902348814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-957a423a56ec4c909ef5923e8a47f5de071db6968f43a19a72810a142f29ad1c3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EotPCA7CBiA2wMNzrnyRmhyo6IFUFUbq2PIkz8jSxBzuRmG3fiBfhmXBIAYkFrOxrf-f4Xh9CHiG8RIDqVQJAxiggUBSKU3GHrFBwRhkT7C5ZAQigspLsiByntAMAJoHfJ0cMEQRX5YrcrPtD47wtBvO18MFTH9qpN6MLvuhDM6Ui7vB1YYpomzBsnA9b612Ty-2MWJ9P9yYl57cZurz4WDifN_0h_TQNo-tmqd2PIdLeXdvi2nmTbPF8PVycfcLv3148IPc60yf78HY9IVdnbz-fvqPnH9bvT9-c00YoNlIlKyMYN7K0jWgUKNtJxbitjag62VqosN2Uqqw7wQ0qU7EawaBgHVOmxYafkGeL7z6GL5NNox5camzfG2_DlLQCxkVd5w_8H1lLLkpZlSqTT_8id2GKPo-RoRJRyZpnCBeoiSGlaDu9j24w8aAR9BykXoLUMNc5SD238PjWeNoMtv2t-JVcBtgCpHzltzb-eflfrk8WUWeCNtvokr66ZIAcUAleY8V_AI1rsOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856119583</pqid></control><display><type>article</type><title>Glycine max non-nodulation locus rj1: a recombinogenic region encompassing a SNP in a lysine motif receptor-like kinase (GmNFR1α)</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Woo Kyu ; Jeong, Namhee ; Indrasumunar, Arief ; Gresshoff, Peter M ; Jeong, Soon-Chun</creator><creatorcontrib>Lee, Woo Kyu ; Jeong, Namhee ; Indrasumunar, Arief ; Gresshoff, Peter M ; Jeong, Soon-Chun</creatorcontrib><description>The rj1 mutation of soybean is a simple recessive allele in a single line that arose as a spontaneous mutation in a population; it exhibits non-nodulation with virtually all Bradyrhizobium and Sinorhizobium strains. Here, we described fine genetic and physical mapping of the rj1 locus on soybean chromosome 2. The initial mapping of the rj1 locus using public markers indicated that A343.p2, a sequence-based marker that contains sequence similar to a part of the LjNFR1 gene regulating nodule formation as a member of lysin motif-type receptor-like kinase (LYK) family, maps very close to or cosegregates with the rj1 locus. The sequence of A343.p2 is 100% identical to parts of two BAC clone sequences (GM_WBb0002O19 and GM_WBb098N11) that contain three members of the LYK family. We analyzed the sequence contig (262 kbp) of the two BAC clones by resequencing and subsequent fine genetic and physical mapping. The results indicated that rj1 is located in a gene-rich region with a recombination rate of 120 kbp/cM: several fold higher than the genome average. Among the LYK genes, NFR1α is most likely the gene encoded at the Rj1 locus. The non-nodulating rj1 allele was created by a single base-pair deletion that results in a premature stop codon. Taken together, the fine genetic and physical mapping of the Rj1-residing chromosomal region, combined with the unexpected observation of a putative recombination hotspot, allowed us to demonstrate that the Rj1 locus most likely encodes the NFR1α gene.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-010-1493-4</identifier><identifier>PMID: 21104396</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Agriculture ; Alleles ; Amino Acid Motifs ; bacterial artificial chromosomes ; Base Sequence ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Bradyrhizobium ; Chromosome Mapping ; Chromosomes, Plant ; clones ; DNA, Plant - genetics ; Gene Expression Regulation, Plant ; Gene loci ; Genes, Recessive ; Genetic Loci ; genetic markers ; Genomes ; Genotype ; Glycine max ; Glycine max - genetics ; Kinases ; Legumes ; Life Sciences ; loci ; lysine ; Lysine - genetics ; Molecular Sequence Data ; Mutation ; nodulation ; Original Paper ; Phosphotransferases - metabolism ; physical chromosome mapping ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Polymorphism, Single Nucleotide ; protein kinases ; Recombination, Genetic ; Sequence Analysis, DNA ; single nucleotide polymorphism ; Sinorhizobium ; Soybeans ; stop codon</subject><ispartof>Theoretical and applied genetics, 2011-03, Vol.122 (5), p.875-884</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-957a423a56ec4c909ef5923e8a47f5de071db6968f43a19a72810a142f29ad1c3</citedby><cites>FETCH-LOGICAL-c492t-957a423a56ec4c909ef5923e8a47f5de071db6968f43a19a72810a142f29ad1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-010-1493-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-010-1493-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21104396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Woo Kyu</creatorcontrib><creatorcontrib>Jeong, Namhee</creatorcontrib><creatorcontrib>Indrasumunar, Arief</creatorcontrib><creatorcontrib>Gresshoff, Peter M</creatorcontrib><creatorcontrib>Jeong, Soon-Chun</creatorcontrib><title>Glycine max non-nodulation locus rj1: a recombinogenic region encompassing a SNP in a lysine motif receptor-like kinase (GmNFR1α)</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>The rj1 mutation of soybean is a simple recessive allele in a single line that arose as a spontaneous mutation in a population; it exhibits non-nodulation with virtually all Bradyrhizobium and Sinorhizobium strains. Here, we described fine genetic and physical mapping of the rj1 locus on soybean chromosome 2. The initial mapping of the rj1 locus using public markers indicated that A343.p2, a sequence-based marker that contains sequence similar to a part of the LjNFR1 gene regulating nodule formation as a member of lysin motif-type receptor-like kinase (LYK) family, maps very close to or cosegregates with the rj1 locus. The sequence of A343.p2 is 100% identical to parts of two BAC clone sequences (GM_WBb0002O19 and GM_WBb098N11) that contain three members of the LYK family. We analyzed the sequence contig (262 kbp) of the two BAC clones by resequencing and subsequent fine genetic and physical mapping. The results indicated that rj1 is located in a gene-rich region with a recombination rate of 120 kbp/cM: several fold higher than the genome average. Among the LYK genes, NFR1α is most likely the gene encoded at the Rj1 locus. The non-nodulating rj1 allele was created by a single base-pair deletion that results in a premature stop codon. Taken together, the fine genetic and physical mapping of the Rj1-residing chromosomal region, combined with the unexpected observation of a putative recombination hotspot, allowed us to demonstrate that the Rj1 locus most likely encodes the NFR1α gene.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Amino Acid Motifs</subject><subject>bacterial artificial chromosomes</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bradyrhizobium</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Plant</subject><subject>clones</subject><subject>DNA, Plant - genetics</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene loci</subject><subject>Genes, Recessive</subject><subject>Genetic Loci</subject><subject>genetic markers</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Glycine max</subject><subject>Glycine max - genetics</subject><subject>Kinases</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>loci</subject><subject>lysine</subject><subject>Lysine - genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>nodulation</subject><subject>Original Paper</subject><subject>Phosphotransferases - metabolism</subject><subject>physical chromosome mapping</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>protein kinases</subject><subject>Recombination, Genetic</subject><subject>Sequence Analysis, DNA</subject><subject>single nucleotide polymorphism</subject><subject>Sinorhizobium</subject><subject>Soybeans</subject><subject>stop codon</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1u1DAUhS0EotPCA7CBiA2wMNzrnyRmhyo6IFUFUbq2PIkz8jSxBzuRmG3fiBfhmXBIAYkFrOxrf-f4Xh9CHiG8RIDqVQJAxiggUBSKU3GHrFBwRhkT7C5ZAQigspLsiByntAMAJoHfJ0cMEQRX5YrcrPtD47wtBvO18MFTH9qpN6MLvuhDM6Ui7vB1YYpomzBsnA9b612Ty-2MWJ9P9yYl57cZurz4WDifN_0h_TQNo-tmqd2PIdLeXdvi2nmTbPF8PVycfcLv3148IPc60yf78HY9IVdnbz-fvqPnH9bvT9-c00YoNlIlKyMYN7K0jWgUKNtJxbitjag62VqosN2Uqqw7wQ0qU7EawaBgHVOmxYafkGeL7z6GL5NNox5camzfG2_DlLQCxkVd5w_8H1lLLkpZlSqTT_8id2GKPo-RoRJRyZpnCBeoiSGlaDu9j24w8aAR9BykXoLUMNc5SD238PjWeNoMtv2t-JVcBtgCpHzltzb-eflfrk8WUWeCNtvokr66ZIAcUAleY8V_AI1rsOY</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Lee, Woo Kyu</creator><creator>Jeong, Namhee</creator><creator>Indrasumunar, Arief</creator><creator>Gresshoff, Peter M</creator><creator>Jeong, Soon-Chun</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20110301</creationdate><title>Glycine max non-nodulation locus rj1: a recombinogenic region encompassing a SNP in a lysine motif receptor-like kinase (GmNFR1α)</title><author>Lee, Woo Kyu ; Jeong, Namhee ; Indrasumunar, Arief ; Gresshoff, Peter M ; Jeong, Soon-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-957a423a56ec4c909ef5923e8a47f5de071db6968f43a19a72810a142f29ad1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Amino Acid Motifs</topic><topic>bacterial artificial chromosomes</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bradyrhizobium</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Plant</topic><topic>clones</topic><topic>DNA, Plant - genetics</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene loci</topic><topic>Genes, Recessive</topic><topic>Genetic Loci</topic><topic>genetic markers</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Glycine max</topic><topic>Glycine max - genetics</topic><topic>Kinases</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>loci</topic><topic>lysine</topic><topic>Lysine - genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>nodulation</topic><topic>Original Paper</topic><topic>Phosphotransferases - metabolism</topic><topic>physical chromosome mapping</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>protein kinases</topic><topic>Recombination, Genetic</topic><topic>Sequence Analysis, DNA</topic><topic>single nucleotide polymorphism</topic><topic>Sinorhizobium</topic><topic>Soybeans</topic><topic>stop codon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Woo Kyu</creatorcontrib><creatorcontrib>Jeong, Namhee</creatorcontrib><creatorcontrib>Indrasumunar, Arief</creatorcontrib><creatorcontrib>Gresshoff, Peter M</creatorcontrib><creatorcontrib>Jeong, Soon-Chun</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Woo Kyu</au><au>Jeong, Namhee</au><au>Indrasumunar, Arief</au><au>Gresshoff, Peter M</au><au>Jeong, Soon-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycine max non-nodulation locus rj1: a recombinogenic region encompassing a SNP in a lysine motif receptor-like kinase (GmNFR1α)</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>122</volume><issue>5</issue><spage>875</spage><epage>884</epage><pages>875-884</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>The rj1 mutation of soybean is a simple recessive allele in a single line that arose as a spontaneous mutation in a population; it exhibits non-nodulation with virtually all Bradyrhizobium and Sinorhizobium strains. Here, we described fine genetic and physical mapping of the rj1 locus on soybean chromosome 2. The initial mapping of the rj1 locus using public markers indicated that A343.p2, a sequence-based marker that contains sequence similar to a part of the LjNFR1 gene regulating nodule formation as a member of lysin motif-type receptor-like kinase (LYK) family, maps very close to or cosegregates with the rj1 locus. The sequence of A343.p2 is 100% identical to parts of two BAC clone sequences (GM_WBb0002O19 and GM_WBb098N11) that contain three members of the LYK family. We analyzed the sequence contig (262 kbp) of the two BAC clones by resequencing and subsequent fine genetic and physical mapping. The results indicated that rj1 is located in a gene-rich region with a recombination rate of 120 kbp/cM: several fold higher than the genome average. Among the LYK genes, NFR1α is most likely the gene encoded at the Rj1 locus. The non-nodulating rj1 allele was created by a single base-pair deletion that results in a premature stop codon. Taken together, the fine genetic and physical mapping of the Rj1-residing chromosomal region, combined with the unexpected observation of a putative recombination hotspot, allowed us to demonstrate that the Rj1 locus most likely encodes the NFR1α gene.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>21104396</pmid><doi>10.1007/s00122-010-1493-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2011-03, Vol.122 (5), p.875-884
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_902348814
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Alleles
Amino Acid Motifs
bacterial artificial chromosomes
Base Sequence
Biochemistry
Biomedical and Life Sciences
Biotechnology
Bradyrhizobium
Chromosome Mapping
Chromosomes, Plant
clones
DNA, Plant - genetics
Gene Expression Regulation, Plant
Gene loci
Genes, Recessive
Genetic Loci
genetic markers
Genomes
Genotype
Glycine max
Glycine max - genetics
Kinases
Legumes
Life Sciences
loci
lysine
Lysine - genetics
Molecular Sequence Data
Mutation
nodulation
Original Paper
Phosphotransferases - metabolism
physical chromosome mapping
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Polymorphism, Single Nucleotide
protein kinases
Recombination, Genetic
Sequence Analysis, DNA
single nucleotide polymorphism
Sinorhizobium
Soybeans
stop codon
title Glycine max non-nodulation locus rj1: a recombinogenic region encompassing a SNP in a lysine motif receptor-like kinase (GmNFR1α)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycine%20max%20non-nodulation%20locus%20rj1:%20a%20recombinogenic%20region%20encompassing%20a%20SNP%20in%20a%20lysine%20motif%20receptor-like%20kinase%20(GmNFR1%CE%B1)&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Lee,%20Woo%20Kyu&rft.date=2011-03-01&rft.volume=122&rft.issue=5&rft.spage=875&rft.epage=884&rft.pages=875-884&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-010-1493-4&rft_dat=%3Cproquest_cross%3E902348814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856119583&rft_id=info:pmid/21104396&rfr_iscdi=true