Effect of Aluminum (Al3+) on Granulation in Upflow Anaerobic Sludge Blanket Reactor Treating Low-Strength Synthetic Wastewater

The effect of aluminum on agglomeration in the sludge bed and chemical oxygen demand (COD) removal efficiency in laboratory-scale upflow anaerobic sludge blanket (UASB) reactors treating low-strength synthetic wastewater (approximately 665 to 738 mg/L of COD) was investigated. Continuous application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water environment research 2010-08, Vol.82 (8), p.715-724
Hauptverfasser: Sondhi, Akash, Guha, Saumyen, Harendranath, C. S., Singh, Anju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue 8
container_start_page 715
container_title Water environment research
container_volume 82
creator Sondhi, Akash
Guha, Saumyen
Harendranath, C. S.
Singh, Anju
description The effect of aluminum on agglomeration in the sludge bed and chemical oxygen demand (COD) removal efficiency in laboratory-scale upflow anaerobic sludge blanket (UASB) reactors treating low-strength synthetic wastewater (approximately 665 to 738 mg/L of COD) was investigated. Continuous application of aluminum chloride (200 mg/L) caused poor COD removal, less sludge density, and adversely affected agglomeration in the sludge bed. An adverse effect on granulation also was observed when 300 mg/L aluminum chloride was added only during the startup, and the effect continued even after it was discontinued. A lower concentration of aluminum chloride (50 mg/L) added for 30 days after the reactors reached steady-state did not affect the COD removal efficiency, but adversely affected the growth of agglomerates and caused temporary degeneration of existing agglomerates. The adverse effect of aluminum appeared to stem from the precipitation of aluminum hydroxide on the surfaces of agglomerates. The effect of aluminum on agglomeration was shown to be a function of influent strength.
doi_str_mv 10.2175/106143010X12609736966603
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_902345966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27870367</jstor_id><sourcerecordid>27870367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4495-2be8b71cff2d926ce3e52898fdf7241518f669c63950c19b2d6c74e192731d473</originalsourceid><addsrcrecordid>eNqNkUuLFDEURgtRnIf-BCW4UZHSvB8LF-3QjkKDMD3DuCuqUjc91VYnPUmKpjfz2430qCCIrnIX53zc3K-qEMFvKVHiHcGScIYJ_kqoxEYxaaSUmD2ojokQvFaCkYdlLlhdOHZUnaS0xphQivnj6ohiLZgS-Li6mzsHNqPg0GycNoOfNujVbGRvXqPg0Xls_TS2eSjz4NHV1o1hh2a-hRi6waLlOPUrQB_G1n-DjC6gtTlEdBmhOH6FFmFXL3MEv8o3aLn3-QZy0a7blGHXZohPqkeuHRM8vX9Pq6uP88uzT_Xiy_nns9mitpwbUdMOdKeIdY72hkoLDATVRrveKcqJINpJaaxkRmBLTEd7aRUHYqhipOeKnVYvD7nbGG4nSLnZDMnCWBaHMKXGYMq4KEf8J6mEIBJrxgr54g9yHaboyzcaxbVmQnNeIH2AbAwpRXDNNg6bNu4bgpsfXTZ_67Koz-_zp24D_S_xZ3kFeH8AdsMI-_8Obq7nF1gRUfxnB3-dSmu_85VWmEnFvgOVGLL2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748835844</pqid></control><display><type>article</type><title>Effect of Aluminum (Al3+) on Granulation in Upflow Anaerobic Sludge Blanket Reactor Treating Low-Strength Synthetic Wastewater</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>JSTOR</source><creator>Sondhi, Akash ; Guha, Saumyen ; Harendranath, C. S. ; Singh, Anju</creator><creatorcontrib>Sondhi, Akash ; Guha, Saumyen ; Harendranath, C. S. ; Singh, Anju</creatorcontrib><description>The effect of aluminum on agglomeration in the sludge bed and chemical oxygen demand (COD) removal efficiency in laboratory-scale upflow anaerobic sludge blanket (UASB) reactors treating low-strength synthetic wastewater (approximately 665 to 738 mg/L of COD) was investigated. Continuous application of aluminum chloride (200 mg/L) caused poor COD removal, less sludge density, and adversely affected agglomeration in the sludge bed. An adverse effect on granulation also was observed when 300 mg/L aluminum chloride was added only during the startup, and the effect continued even after it was discontinued. A lower concentration of aluminum chloride (50 mg/L) added for 30 days after the reactors reached steady-state did not affect the COD removal efficiency, but adversely affected the growth of agglomerates and caused temporary degeneration of existing agglomerates. The adverse effect of aluminum appeared to stem from the precipitation of aluminum hydroxide on the surfaces of agglomerates. The effect of aluminum on agglomeration was shown to be a function of influent strength.</description><identifier>ISSN: 1061-4303</identifier><identifier>EISSN: 1554-7531</identifier><identifier>DOI: 10.2175/106143010X12609736966603</identifier><identifier>PMID: 20853750</identifier><language>eng</language><publisher>Water Environment Federation 601 Wythe Street Alexandria, VA 22314‐1994 U.S.A: Water Environment Federation</publisher><subject>Additives ; Agglomerates ; Aluminum ; aluminum additive ; Aluminum Compounds - chemistry ; Anaerobiosis ; Binding sites ; Bioreactors ; Chemical oxygen demand ; Chlorides ; Chlorides - chemistry ; Efficiency ; environmental scanning electron microscopy ; Flocculation ; granulation ; image analysis ; Methane ; Sewage sludge ; Sludge ; Sludge treatment ; Start up firms ; upflow anaerobic sludge blanket reactor ; Waste Management - methods ; Wastewater ; Water treatment</subject><ispartof>Water environment research, 2010-08, Vol.82 (8), p.715-724</ispartof><rights>2010 WATER ENVIRONMENT FEDERATION (WEF)</rights><rights>2010 Water Environment Federation</rights><rights>Copyright Water Environment Federation Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4495-2be8b71cff2d926ce3e52898fdf7241518f669c63950c19b2d6c74e192731d473</citedby><cites>FETCH-LOGICAL-c4495-2be8b71cff2d926ce3e52898fdf7241518f669c63950c19b2d6c74e192731d473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27870367$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27870367$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20853750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sondhi, Akash</creatorcontrib><creatorcontrib>Guha, Saumyen</creatorcontrib><creatorcontrib>Harendranath, C. S.</creatorcontrib><creatorcontrib>Singh, Anju</creatorcontrib><title>Effect of Aluminum (Al3+) on Granulation in Upflow Anaerobic Sludge Blanket Reactor Treating Low-Strength Synthetic Wastewater</title><title>Water environment research</title><addtitle>Water Environ Res</addtitle><description>The effect of aluminum on agglomeration in the sludge bed and chemical oxygen demand (COD) removal efficiency in laboratory-scale upflow anaerobic sludge blanket (UASB) reactors treating low-strength synthetic wastewater (approximately 665 to 738 mg/L of COD) was investigated. Continuous application of aluminum chloride (200 mg/L) caused poor COD removal, less sludge density, and adversely affected agglomeration in the sludge bed. An adverse effect on granulation also was observed when 300 mg/L aluminum chloride was added only during the startup, and the effect continued even after it was discontinued. A lower concentration of aluminum chloride (50 mg/L) added for 30 days after the reactors reached steady-state did not affect the COD removal efficiency, but adversely affected the growth of agglomerates and caused temporary degeneration of existing agglomerates. The adverse effect of aluminum appeared to stem from the precipitation of aluminum hydroxide on the surfaces of agglomerates. The effect of aluminum on agglomeration was shown to be a function of influent strength.</description><subject>Additives</subject><subject>Agglomerates</subject><subject>Aluminum</subject><subject>aluminum additive</subject><subject>Aluminum Compounds - chemistry</subject><subject>Anaerobiosis</subject><subject>Binding sites</subject><subject>Bioreactors</subject><subject>Chemical oxygen demand</subject><subject>Chlorides</subject><subject>Chlorides - chemistry</subject><subject>Efficiency</subject><subject>environmental scanning electron microscopy</subject><subject>Flocculation</subject><subject>granulation</subject><subject>image analysis</subject><subject>Methane</subject><subject>Sewage sludge</subject><subject>Sludge</subject><subject>Sludge treatment</subject><subject>Start up firms</subject><subject>upflow anaerobic sludge blanket reactor</subject><subject>Waste Management - methods</subject><subject>Wastewater</subject><subject>Water treatment</subject><issn>1061-4303</issn><issn>1554-7531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUuLFDEURgtRnIf-BCW4UZHSvB8LF-3QjkKDMD3DuCuqUjc91VYnPUmKpjfz2430qCCIrnIX53zc3K-qEMFvKVHiHcGScIYJ_kqoxEYxaaSUmD2ojokQvFaCkYdlLlhdOHZUnaS0xphQivnj6ohiLZgS-Li6mzsHNqPg0GycNoOfNujVbGRvXqPg0Xls_TS2eSjz4NHV1o1hh2a-hRi6waLlOPUrQB_G1n-DjC6gtTlEdBmhOH6FFmFXL3MEv8o3aLn3-QZy0a7blGHXZohPqkeuHRM8vX9Pq6uP88uzT_Xiy_nns9mitpwbUdMOdKeIdY72hkoLDATVRrveKcqJINpJaaxkRmBLTEd7aRUHYqhipOeKnVYvD7nbGG4nSLnZDMnCWBaHMKXGYMq4KEf8J6mEIBJrxgr54g9yHaboyzcaxbVmQnNeIH2AbAwpRXDNNg6bNu4bgpsfXTZ_67Koz-_zp24D_S_xZ3kFeH8AdsMI-_8Obq7nF1gRUfxnB3-dSmu_85VWmEnFvgOVGLL2</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Sondhi, Akash</creator><creator>Guha, Saumyen</creator><creator>Harendranath, C. S.</creator><creator>Singh, Anju</creator><general>Water Environment Federation</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>7UA</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201008</creationdate><title>Effect of Aluminum (Al3+) on Granulation in Upflow Anaerobic Sludge Blanket Reactor Treating Low-Strength Synthetic Wastewater</title><author>Sondhi, Akash ; Guha, Saumyen ; Harendranath, C. S. ; Singh, Anju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4495-2be8b71cff2d926ce3e52898fdf7241518f669c63950c19b2d6c74e192731d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Additives</topic><topic>Agglomerates</topic><topic>Aluminum</topic><topic>aluminum additive</topic><topic>Aluminum Compounds - chemistry</topic><topic>Anaerobiosis</topic><topic>Binding sites</topic><topic>Bioreactors</topic><topic>Chemical oxygen demand</topic><topic>Chlorides</topic><topic>Chlorides - chemistry</topic><topic>Efficiency</topic><topic>environmental scanning electron microscopy</topic><topic>Flocculation</topic><topic>granulation</topic><topic>image analysis</topic><topic>Methane</topic><topic>Sewage sludge</topic><topic>Sludge</topic><topic>Sludge treatment</topic><topic>Start up firms</topic><topic>upflow anaerobic sludge blanket reactor</topic><topic>Waste Management - methods</topic><topic>Wastewater</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sondhi, Akash</creatorcontrib><creatorcontrib>Guha, Saumyen</creatorcontrib><creatorcontrib>Harendranath, C. S.</creatorcontrib><creatorcontrib>Singh, Anju</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water environment research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sondhi, Akash</au><au>Guha, Saumyen</au><au>Harendranath, C. S.</au><au>Singh, Anju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Aluminum (Al3+) on Granulation in Upflow Anaerobic Sludge Blanket Reactor Treating Low-Strength Synthetic Wastewater</atitle><jtitle>Water environment research</jtitle><addtitle>Water Environ Res</addtitle><date>2010-08</date><risdate>2010</risdate><volume>82</volume><issue>8</issue><spage>715</spage><epage>724</epage><pages>715-724</pages><issn>1061-4303</issn><eissn>1554-7531</eissn><abstract>The effect of aluminum on agglomeration in the sludge bed and chemical oxygen demand (COD) removal efficiency in laboratory-scale upflow anaerobic sludge blanket (UASB) reactors treating low-strength synthetic wastewater (approximately 665 to 738 mg/L of COD) was investigated. Continuous application of aluminum chloride (200 mg/L) caused poor COD removal, less sludge density, and adversely affected agglomeration in the sludge bed. An adverse effect on granulation also was observed when 300 mg/L aluminum chloride was added only during the startup, and the effect continued even after it was discontinued. A lower concentration of aluminum chloride (50 mg/L) added for 30 days after the reactors reached steady-state did not affect the COD removal efficiency, but adversely affected the growth of agglomerates and caused temporary degeneration of existing agglomerates. The adverse effect of aluminum appeared to stem from the precipitation of aluminum hydroxide on the surfaces of agglomerates. The effect of aluminum on agglomeration was shown to be a function of influent strength.</abstract><cop>Water Environment Federation 601 Wythe Street Alexandria, VA 22314‐1994 U.S.A</cop><pub>Water Environment Federation</pub><pmid>20853750</pmid><doi>10.2175/106143010X12609736966603</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-4303
ispartof Water environment research, 2010-08, Vol.82 (8), p.715-724
issn 1061-4303
1554-7531
language eng
recordid cdi_proquest_miscellaneous_902345966
source MEDLINE; Wiley Online Library All Journals; JSTOR
subjects Additives
Agglomerates
Aluminum
aluminum additive
Aluminum Compounds - chemistry
Anaerobiosis
Binding sites
Bioreactors
Chemical oxygen demand
Chlorides
Chlorides - chemistry
Efficiency
environmental scanning electron microscopy
Flocculation
granulation
image analysis
Methane
Sewage sludge
Sludge
Sludge treatment
Start up firms
upflow anaerobic sludge blanket reactor
Waste Management - methods
Wastewater
Water treatment
title Effect of Aluminum (Al3+) on Granulation in Upflow Anaerobic Sludge Blanket Reactor Treating Low-Strength Synthetic Wastewater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Aluminum%20(Al3+)%20on%20Granulation%20in%20Upflow%20Anaerobic%20Sludge%20Blanket%20Reactor%20Treating%20Low-Strength%20Synthetic%20Wastewater&rft.jtitle=Water%20environment%20research&rft.au=Sondhi,%20Akash&rft.date=2010-08&rft.volume=82&rft.issue=8&rft.spage=715&rft.epage=724&rft.pages=715-724&rft.issn=1061-4303&rft.eissn=1554-7531&rft_id=info:doi/10.2175/106143010X12609736966603&rft_dat=%3Cjstor_proqu%3E27870367%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748835844&rft_id=info:pmid/20853750&rft_jstor_id=27870367&rfr_iscdi=true