Carbon nanocages as heavy metal ion adsorbents
Heavy metal ion contamination in drinking water poses a major risk to human health, whilst contamination in wastewater streams can cause damage to the wider environment. In this study carbon nanocages, synthesised using a supercritical fluid deposition method, were examined as adsorbents of Pb 2+ io...
Gespeichert in:
Veröffentlicht in: | Desalination 2011-10, Vol.280 (1), p.87-94 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 87 |
container_title | Desalination |
container_volume | 280 |
creator | Burke, David M. O'Byrne, Justin P. Fleming, Peter G. Borah, Dipu Morris, Michael A. Holmes, Justin D. |
description | Heavy metal ion contamination in drinking water poses a major risk to human health, whilst contamination in wastewater streams can cause damage to the wider environment. In this study carbon nanocages, synthesised using a supercritical fluid deposition method, were examined as adsorbents of Pb
2+ ions from aqueous solutions. Through careful selection of the catalyst and the carbon deposition temperature and pressure, high yields of nanocages with surface areas up to 1175
m
2
g
−1 were synthesised. These high surface area materials were subsequently tested for their ability to absorb Pb
2+ ions, as a function of pH, from simulated wastewater. The nanocages were found to be effective at removing the Pb
2+ ions at levels of 11.1
mg
g
−1, compared to 7.6
mg
g
−1 for commercially available activated carbon. The kinetics of metal ion adsorption by the nanocages and activated carbon can be described by a pseudo-second-order kinetics model, with a rate coefficient (
k
2) of 4.8
×
10
2
g
mg
−1
min
−1.
► Synthesis of high surface area carbon nanocages (CNCs). ► Optimisation of the CNC production process to generate high surface areas and increase yields. ► CNCs exhibit excellent dispersibility in aqueous solution. ► CNCs permit fast transport of aqueous media through a fix bed system. ► CNCs and AC were tested for the removal of lead ions (Pb
2+) from simulated wastewater conditions. |
doi_str_mv | 10.1016/j.desal.2011.06.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902343785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916411005819</els_id><sourcerecordid>1671455265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8619b9c3fa8d7875d86a600016b09db3f816b4b23823b3996f5be8e444ed91203</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1iyIFgS_BXHHhhQxZdUiQVmyx8XcJUmxU4r9d_j0oqx093pnrtXehC6JrgimIj7ReUhma6imJAKiwrX7ARNiGxYybngp2iC86ZURPBzdJHSIo9UMTZB1cxEO_RFb_rBmS9IhUnFN5jNtljCaLoi5KXxaYgW-jFdorPWdAmuDnWKPp-fPmav5fz95W32OC8d52wspSDKKsdaI30jm9pLYQTOocJi5S1rZe64pUxSZplSoq0tSOCcg1eEYjZFt_u_qzj8rCGNehmSg64zPQzrpBWmjLNG1pm8O0oS0RBe11TsULZHXRxSitDqVQxLE7eaYL3zqBf6z6PeedRY6OwxX90cAkxypmuj6V1I_6eUC8UI4Zl72HOQvWwCRJ1cgN6BDxHcqP0Qjub8AkXBhvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671455265</pqid></control><display><type>article</type><title>Carbon nanocages as heavy metal ion adsorbents</title><source>Elsevier ScienceDirect Journals</source><creator>Burke, David M. ; O'Byrne, Justin P. ; Fleming, Peter G. ; Borah, Dipu ; Morris, Michael A. ; Holmes, Justin D.</creator><creatorcontrib>Burke, David M. ; O'Byrne, Justin P. ; Fleming, Peter G. ; Borah, Dipu ; Morris, Michael A. ; Holmes, Justin D.</creatorcontrib><description>Heavy metal ion contamination in drinking water poses a major risk to human health, whilst contamination in wastewater streams can cause damage to the wider environment. In this study carbon nanocages, synthesised using a supercritical fluid deposition method, were examined as adsorbents of Pb
2+ ions from aqueous solutions. Through careful selection of the catalyst and the carbon deposition temperature and pressure, high yields of nanocages with surface areas up to 1175
m
2
g
−1 were synthesised. These high surface area materials were subsequently tested for their ability to absorb Pb
2+ ions, as a function of pH, from simulated wastewater. The nanocages were found to be effective at removing the Pb
2+ ions at levels of 11.1
mg
g
−1, compared to 7.6
mg
g
−1 for commercially available activated carbon. The kinetics of metal ion adsorption by the nanocages and activated carbon can be described by a pseudo-second-order kinetics model, with a rate coefficient (
k
2) of 4.8
×
10
2
g
mg
−1
min
−1.
► Synthesis of high surface area carbon nanocages (CNCs). ► Optimisation of the CNC production process to generate high surface areas and increase yields. ► CNCs exhibit excellent dispersibility in aqueous solution. ► CNCs permit fast transport of aqueous media through a fix bed system. ► CNCs and AC were tested for the removal of lead ions (Pb
2+) from simulated wastewater conditions.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2011.06.053</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorbents ; Adsorption ; Applied sciences ; Carbon ; Catalysis ; Catalytic reactions ; Chemical engineering ; Chemistry ; Deposition ; Drinking water and swimming-pool water. Desalination ; Exact sciences and technology ; General and physical chemistry ; General purification processes ; Lead ions ; Mathematical models ; Nanocages ; Nanocomposites ; Nanomaterials ; Nanostructure ; Pollution ; Reactors ; Remediation ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Waste water ; Wastewaters ; Water treatment and pollution</subject><ispartof>Desalination, 2011-10, Vol.280 (1), p.87-94</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8619b9c3fa8d7875d86a600016b09db3f816b4b23823b3996f5be8e444ed91203</citedby><cites>FETCH-LOGICAL-c443t-8619b9c3fa8d7875d86a600016b09db3f816b4b23823b3996f5be8e444ed91203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0011916411005819$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24693114$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Burke, David M.</creatorcontrib><creatorcontrib>O'Byrne, Justin P.</creatorcontrib><creatorcontrib>Fleming, Peter G.</creatorcontrib><creatorcontrib>Borah, Dipu</creatorcontrib><creatorcontrib>Morris, Michael A.</creatorcontrib><creatorcontrib>Holmes, Justin D.</creatorcontrib><title>Carbon nanocages as heavy metal ion adsorbents</title><title>Desalination</title><description>Heavy metal ion contamination in drinking water poses a major risk to human health, whilst contamination in wastewater streams can cause damage to the wider environment. In this study carbon nanocages, synthesised using a supercritical fluid deposition method, were examined as adsorbents of Pb
2+ ions from aqueous solutions. Through careful selection of the catalyst and the carbon deposition temperature and pressure, high yields of nanocages with surface areas up to 1175
m
2
g
−1 were synthesised. These high surface area materials were subsequently tested for their ability to absorb Pb
2+ ions, as a function of pH, from simulated wastewater. The nanocages were found to be effective at removing the Pb
2+ ions at levels of 11.1
mg
g
−1, compared to 7.6
mg
g
−1 for commercially available activated carbon. The kinetics of metal ion adsorption by the nanocages and activated carbon can be described by a pseudo-second-order kinetics model, with a rate coefficient (
k
2) of 4.8
×
10
2
g
mg
−1
min
−1.
► Synthesis of high surface area carbon nanocages (CNCs). ► Optimisation of the CNC production process to generate high surface areas and increase yields. ► CNCs exhibit excellent dispersibility in aqueous solution. ► CNCs permit fast transport of aqueous media through a fix bed system. ► CNCs and AC were tested for the removal of lead ions (Pb
2+) from simulated wastewater conditions.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Deposition</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General purification processes</subject><subject>Lead ions</subject><subject>Mathematical models</subject><subject>Nanocages</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Pollution</subject><subject>Reactors</subject><subject>Remediation</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Waste water</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1iyIFgS_BXHHhhQxZdUiQVmyx8XcJUmxU4r9d_j0oqx093pnrtXehC6JrgimIj7ReUhma6imJAKiwrX7ARNiGxYybngp2iC86ZURPBzdJHSIo9UMTZB1cxEO_RFb_rBmS9IhUnFN5jNtljCaLoi5KXxaYgW-jFdorPWdAmuDnWKPp-fPmav5fz95W32OC8d52wspSDKKsdaI30jm9pLYQTOocJi5S1rZe64pUxSZplSoq0tSOCcg1eEYjZFt_u_qzj8rCGNehmSg64zPQzrpBWmjLNG1pm8O0oS0RBe11TsULZHXRxSitDqVQxLE7eaYL3zqBf6z6PeedRY6OwxX90cAkxypmuj6V1I_6eUC8UI4Zl72HOQvWwCRJ1cgN6BDxHcqP0Qjub8AkXBhvU</recordid><startdate>20111003</startdate><enddate>20111003</enddate><creator>Burke, David M.</creator><creator>O'Byrne, Justin P.</creator><creator>Fleming, Peter G.</creator><creator>Borah, Dipu</creator><creator>Morris, Michael A.</creator><creator>Holmes, Justin D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20111003</creationdate><title>Carbon nanocages as heavy metal ion adsorbents</title><author>Burke, David M. ; O'Byrne, Justin P. ; Fleming, Peter G. ; Borah, Dipu ; Morris, Michael A. ; Holmes, Justin D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8619b9c3fa8d7875d86a600016b09db3f816b4b23823b3996f5be8e444ed91203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Deposition</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General purification processes</topic><topic>Lead ions</topic><topic>Mathematical models</topic><topic>Nanocages</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Pollution</topic><topic>Reactors</topic><topic>Remediation</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Waste water</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, David M.</creatorcontrib><creatorcontrib>O'Byrne, Justin P.</creatorcontrib><creatorcontrib>Fleming, Peter G.</creatorcontrib><creatorcontrib>Borah, Dipu</creatorcontrib><creatorcontrib>Morris, Michael A.</creatorcontrib><creatorcontrib>Holmes, Justin D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burke, David M.</au><au>O'Byrne, Justin P.</au><au>Fleming, Peter G.</au><au>Borah, Dipu</au><au>Morris, Michael A.</au><au>Holmes, Justin D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanocages as heavy metal ion adsorbents</atitle><jtitle>Desalination</jtitle><date>2011-10-03</date><risdate>2011</risdate><volume>280</volume><issue>1</issue><spage>87</spage><epage>94</epage><pages>87-94</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>Heavy metal ion contamination in drinking water poses a major risk to human health, whilst contamination in wastewater streams can cause damage to the wider environment. In this study carbon nanocages, synthesised using a supercritical fluid deposition method, were examined as adsorbents of Pb
2+ ions from aqueous solutions. Through careful selection of the catalyst and the carbon deposition temperature and pressure, high yields of nanocages with surface areas up to 1175
m
2
g
−1 were synthesised. These high surface area materials were subsequently tested for their ability to absorb Pb
2+ ions, as a function of pH, from simulated wastewater. The nanocages were found to be effective at removing the Pb
2+ ions at levels of 11.1
mg
g
−1, compared to 7.6
mg
g
−1 for commercially available activated carbon. The kinetics of metal ion adsorption by the nanocages and activated carbon can be described by a pseudo-second-order kinetics model, with a rate coefficient (
k
2) of 4.8
×
10
2
g
mg
−1
min
−1.
► Synthesis of high surface area carbon nanocages (CNCs). ► Optimisation of the CNC production process to generate high surface areas and increase yields. ► CNCs exhibit excellent dispersibility in aqueous solution. ► CNCs permit fast transport of aqueous media through a fix bed system. ► CNCs and AC were tested for the removal of lead ions (Pb
2+) from simulated wastewater conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2011.06.053</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-9164 |
ispartof | Desalination, 2011-10, Vol.280 (1), p.87-94 |
issn | 0011-9164 1873-4464 |
language | eng |
recordid | cdi_proquest_miscellaneous_902343785 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorbents Adsorption Applied sciences Carbon Catalysis Catalytic reactions Chemical engineering Chemistry Deposition Drinking water and swimming-pool water. Desalination Exact sciences and technology General and physical chemistry General purification processes Lead ions Mathematical models Nanocages Nanocomposites Nanomaterials Nanostructure Pollution Reactors Remediation Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Waste water Wastewaters Water treatment and pollution |
title | Carbon nanocages as heavy metal ion adsorbents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanocages%20as%20heavy%20metal%20ion%20adsorbents&rft.jtitle=Desalination&rft.au=Burke,%20David%20M.&rft.date=2011-10-03&rft.volume=280&rft.issue=1&rft.spage=87&rft.epage=94&rft.pages=87-94&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/j.desal.2011.06.053&rft_dat=%3Cproquest_cross%3E1671455265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671455265&rft_id=info:pmid/&rft_els_id=S0011916411005819&rfr_iscdi=true |