Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins

Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin–proteasome system. Here, we use q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2011-11, Vol.13 (11), p.1344-1352
Hauptverfasser: Fang, Nancy N., Ng, Alex H. M., Measday, Vivien, Mayor, Thibault
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1352
container_issue 11
container_start_page 1344
container_title Nature cell biology
container_volume 13
creator Fang, Nancy N.
Ng, Alex H. M.
Measday, Vivien
Mayor, Thibault
description Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin–proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase in the level of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low-solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation. The ubiquitin–proteasome system clears misfolded proteins to maintain cellular homeostasis. Mayor and colleagues identify the ubiquitin ligase Hul5 as a critical component of the heat-shock response and show that it selectively targets misfolded cytosolic proteins for degradation.
doi_str_mv 10.1038/ncb2343
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_902338959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A272518479</galeid><sourcerecordid>A272518479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3893-96f10b1e7620391e7942b1206aab9d517da6e8f7f44703be3c715e88fcd7f4763</originalsourceid><addsrcrecordid>eNptklFvFCEQx4nR2FqN38AQfdA-bIVlF5bH5lK9Jk2a1Pq8Ydnh5MLCFVjjfXu53NXmGsPDkJkf_5l_GITeU3JBCeu-ej3UrGEv0CltBK8aLuTL3Z23lWCyPkFvUloTQpuGiNfopKayYy3np2iznF2Ll1eLezwP9mG22Xrs7EolwBuntgkrPKl1iDgGB7gU8y94RLdOZRs8Vn7EeY4-_IaIg8F6m0MKzmo82WSCG2HEmxgyWJ_eoldGuQTvDvEM_fx2db9YVje3368XlzeVZp1kleSGkoGC4DVhskTZ1AOtCVdqkGNLxag4dEaYphGEDcC0oC10ndFjyQnOztDnvW5p_DBDyn2ZRYNzykOYUy9JzUqnVhby4zNyHYqZMlyBaEcJl6xAn_bQSjnorTchR6V3kv1lLeqWdo3YSV38hypnhMnq4MHYkj96cH70oDAZ_uSVmlPqr3_cHbMHRzqGlCKYfhPtpOK2p6TfbUF_2IJCfjg4mocJxn_c47cX4MseSKXkVxCfLD_X-gvDsLe-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901810693</pqid></control><display><type>article</type><title>Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins</title><source>MEDLINE</source><source>Springer Journals</source><source>Nature Journals Online</source><creator>Fang, Nancy N. ; Ng, Alex H. M. ; Measday, Vivien ; Mayor, Thibault</creator><creatorcontrib>Fang, Nancy N. ; Ng, Alex H. M. ; Measday, Vivien ; Mayor, Thibault</creatorcontrib><description>Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin–proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase in the level of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low-solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation. The ubiquitin–proteasome system clears misfolded proteins to maintain cellular homeostasis. Mayor and colleagues identify the ubiquitin ligase Hul5 as a critical component of the heat-shock response and show that it selectively targets misfolded cytosolic proteins for degradation.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb2343</identifier><identifier>PMID: 21983566</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/474/1768 ; 631/80/474/582 ; Biology ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cellular proteins ; Cytoplasm ; Cytosol - enzymology ; Developmental Biology ; Heat-Shock Proteins - metabolism ; Heat-Shock Response ; Life Sciences ; Ligases ; Mass Spectrometry ; Molecular Chaperones - metabolism ; Physiological aspects ; Physiology ; Polypeptides ; Prions - metabolism ; Protein Folding ; Protein Processing, Post-Translational ; Proteins ; Quality control ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Solubility ; Standard deviation ; Stem Cells ; Time Factors ; Ubiquitin ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination ; Yeast</subject><ispartof>Nature cell biology, 2011-11, Vol.13 (11), p.1344-1352</ispartof><rights>Springer Nature Limited 2011</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3893-96f10b1e7620391e7942b1206aab9d517da6e8f7f44703be3c715e88fcd7f4763</citedby><cites>FETCH-LOGICAL-c3893-96f10b1e7620391e7942b1206aab9d517da6e8f7f44703be3c715e88fcd7f4763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb2343$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb2343$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21983566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Nancy N.</creatorcontrib><creatorcontrib>Ng, Alex H. M.</creatorcontrib><creatorcontrib>Measday, Vivien</creatorcontrib><creatorcontrib>Mayor, Thibault</creatorcontrib><title>Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin–proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase in the level of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low-solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation. The ubiquitin–proteasome system clears misfolded proteins to maintain cellular homeostasis. Mayor and colleagues identify the ubiquitin ligase Hul5 as a critical component of the heat-shock response and show that it selectively targets misfolded cytosolic proteins for degradation.</description><subject>631/80/474/1768</subject><subject>631/80/474/582</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cellular proteins</subject><subject>Cytoplasm</subject><subject>Cytosol - enzymology</subject><subject>Developmental Biology</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Heat-Shock Response</subject><subject>Life Sciences</subject><subject>Ligases</subject><subject>Mass Spectrometry</subject><subject>Molecular Chaperones - metabolism</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Polypeptides</subject><subject>Prions - metabolism</subject><subject>Protein Folding</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Solubility</subject><subject>Standard deviation</subject><subject>Stem Cells</subject><subject>Time Factors</subject><subject>Ubiquitin</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><subject>Yeast</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptklFvFCEQx4nR2FqN38AQfdA-bIVlF5bH5lK9Jk2a1Pq8Ydnh5MLCFVjjfXu53NXmGsPDkJkf_5l_GITeU3JBCeu-ej3UrGEv0CltBK8aLuTL3Z23lWCyPkFvUloTQpuGiNfopKayYy3np2iznF2Ll1eLezwP9mG22Xrs7EolwBuntgkrPKl1iDgGB7gU8y94RLdOZRs8Vn7EeY4-_IaIg8F6m0MKzmo82WSCG2HEmxgyWJ_eoldGuQTvDvEM_fx2db9YVje3368XlzeVZp1kleSGkoGC4DVhskTZ1AOtCVdqkGNLxag4dEaYphGEDcC0oC10ndFjyQnOztDnvW5p_DBDyn2ZRYNzykOYUy9JzUqnVhby4zNyHYqZMlyBaEcJl6xAn_bQSjnorTchR6V3kv1lLeqWdo3YSV38hypnhMnq4MHYkj96cH70oDAZ_uSVmlPqr3_cHbMHRzqGlCKYfhPtpOK2p6TfbUF_2IJCfjg4mocJxn_c47cX4MseSKXkVxCfLD_X-gvDsLe-</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Fang, Nancy N.</creator><creator>Ng, Alex H. M.</creator><creator>Measday, Vivien</creator><creator>Mayor, Thibault</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201111</creationdate><title>Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins</title><author>Fang, Nancy N. ; Ng, Alex H. M. ; Measday, Vivien ; Mayor, Thibault</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3893-96f10b1e7620391e7942b1206aab9d517da6e8f7f44703be3c715e88fcd7f4763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/80/474/1768</topic><topic>631/80/474/582</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cellular proteins</topic><topic>Cytoplasm</topic><topic>Cytosol - enzymology</topic><topic>Developmental Biology</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Heat-Shock Response</topic><topic>Life Sciences</topic><topic>Ligases</topic><topic>Mass Spectrometry</topic><topic>Molecular Chaperones - metabolism</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Polypeptides</topic><topic>Prions - metabolism</topic><topic>Protein Folding</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Solubility</topic><topic>Standard deviation</topic><topic>Stem Cells</topic><topic>Time Factors</topic><topic>Ubiquitin</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Nancy N.</creatorcontrib><creatorcontrib>Ng, Alex H. M.</creatorcontrib><creatorcontrib>Measday, Vivien</creatorcontrib><creatorcontrib>Mayor, Thibault</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Nancy N.</au><au>Ng, Alex H. M.</au><au>Measday, Vivien</au><au>Mayor, Thibault</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2011-11</date><risdate>2011</risdate><volume>13</volume><issue>11</issue><spage>1344</spage><epage>1352</epage><pages>1344-1352</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin–proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase in the level of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low-solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation. The ubiquitin–proteasome system clears misfolded proteins to maintain cellular homeostasis. Mayor and colleagues identify the ubiquitin ligase Hul5 as a critical component of the heat-shock response and show that it selectively targets misfolded cytosolic proteins for degradation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21983566</pmid><doi>10.1038/ncb2343</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2011-11, Vol.13 (11), p.1344-1352
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_902338959
source MEDLINE; Springer Journals; Nature Journals Online
subjects 631/80/474/1768
631/80/474/582
Biology
Biomedical and Life Sciences
Cancer Research
Cell Biology
Cellular proteins
Cytoplasm
Cytosol - enzymology
Developmental Biology
Heat-Shock Proteins - metabolism
Heat-Shock Response
Life Sciences
Ligases
Mass Spectrometry
Molecular Chaperones - metabolism
Physiological aspects
Physiology
Polypeptides
Prions - metabolism
Protein Folding
Protein Processing, Post-Translational
Proteins
Quality control
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Solubility
Standard deviation
Stem Cells
Time Factors
Ubiquitin
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Yeast
title Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hul5%20HECT%20ubiquitin%20ligase%20plays%20a%20major%20role%20in%20the%20ubiquitylation%20and%20turnover%20of%20cytosolic%20misfolded%20proteins&rft.jtitle=Nature%20cell%20biology&rft.au=Fang,%20Nancy%20N.&rft.date=2011-11&rft.volume=13&rft.issue=11&rft.spage=1344&rft.epage=1352&rft.pages=1344-1352&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb2343&rft_dat=%3Cgale_proqu%3EA272518479%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901810693&rft_id=info:pmid/21983566&rft_galeid=A272518479&rfr_iscdi=true