Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea

Oxic-anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO₂) assimilation rates and active autotrophic microorganisms have challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2010-02, Vol.71 (2), p.226-236
Hauptverfasser: Jost, Günter, Martens-Habbena, Willm, Pollehne, Falk, Schnetger, Bernhard, Labrenz, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 2
container_start_page 226
container_title FEMS microbiology ecology
container_volume 71
creator Jost, Günter
Martens-Habbena, Willm
Pollehne, Falk
Schnetger, Bernhard
Labrenz, Matthias
description Oxic-anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO₂) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic-anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO₂ fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO₂ assimilation, totaling 9.3 mmol C m⁻² day⁻¹, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L⁻¹ day⁻¹ were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.
doi_str_mv 10.1111/j.1574-6941.2009.00798.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902335415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-6941.2009.00798.x</oup_id><sourcerecordid>733439889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5458-b1a7db63db5c6f598624e946b4b9f6221a735eed8d0727b2c222468845cef2453</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEokPhFcASCzZk8H9iiU2p2lKpiEXp2nKSm45HiT3YjjrzNjwqzswIpAoE3lxL9zvnXvsUBSJ4SfL5sF4SUfFSKk6WFGO1xLhS9XL7pFj8ajwtFpjIupRcyZPiRYxrjIlgHD8vTohSVEjGF8WPM2cg-Ma2KE5DPwXkt7YzyXqHrENpBcg0EVwLyPfI2RRMAtT50bp8iWi07aw2A2pXMHozJZ-C36x2qAEHJq32FhsYzH0esWfawbq929wBExMEh658Gozr0CcTrXufy5AyfwvmZfGsN0OEV8d6WtxdXnw7_1zefL26Pj-7KVvBRV02xFRdI1nXiFb2QtWSclBcNrxRvaQ0t5kA6OoOV7RqaEsp5bKuuWihp1yw0-LdwXcT_PcJYtKjjS0MeSvwU9QKU8YEJ_8mK8Y4U3WtMvn2Ebn2U3D5GZoyLAWrOKkzVR-o_JMxBuj1JtjRhJ0mWM9x67WeU9VzqnqOW-_j1tssfX0cMDUjdL-Fx3wz8PEAPNgBdv9trC8vvuRLlrOD3E-bv4jLP2315qDqjdfmPtio724pJgyTinLCKPsJn8LSSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306537418</pqid></control><display><type>article</type><title>Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Jost, Günter ; Martens-Habbena, Willm ; Pollehne, Falk ; Schnetger, Bernhard ; Labrenz, Matthias</creator><creatorcontrib>Jost, Günter ; Martens-Habbena, Willm ; Pollehne, Falk ; Schnetger, Bernhard ; Labrenz, Matthias</creatorcontrib><description>Oxic-anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO₂) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic-anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO₂ fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO₂ assimilation, totaling 9.3 mmol C m⁻² day⁻¹, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L⁻¹ day⁻¹ were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.</description><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1111/j.1574-6941.2009.00798.x</identifier><identifier>PMID: 19925634</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Aerobic microorganisms ; Anaerobic microorganisms ; Anaerobiosis ; anoxic sulfur oxidation ; Assimilation ; Autotrophic microorganisms ; Autotrophs ; Biomass ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon dioxide fixation ; Carbon sequestration ; Chemoautotrophy ; Chemocline ; chemolithotrophic bacteria ; CO2 fixation ; CO₂ fixation ; Detection limits ; Ecology ; Epsilonproteobacteria - metabolism ; Gammaproteobacteria - metabolism ; Geographical distribution ; Harbors ; Interfaces ; Manganese ; manganese oxide ; Microbiology ; Microorganisms ; Nitrates ; Nitrates - analysis ; Nitrites - analysis ; Organic chemistry ; Oxidation ; Oxidation-Reduction ; Oxidizing agents ; Oxygen ; Oxygen - analysis ; pelagic chemocline ; Redox potential ; Seawater - chemistry ; Seawater - microbiology ; sulfide recycling ; Sulfides ; Sulfur ; Sulfur - metabolism ; Sulfur oxidation ; Water depth ; Water Microbiology</subject><ispartof>FEMS microbiology ecology, 2010-02, Vol.71 (2), p.226-236</ispartof><rights>2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved 2009</rights><rights>2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5458-b1a7db63db5c6f598624e946b4b9f6221a735eed8d0727b2c222468845cef2453</citedby><cites>FETCH-LOGICAL-c5458-b1a7db63db5c6f598624e946b4b9f6221a735eed8d0727b2c222468845cef2453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1574-6941.2009.00798.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1574-6941.2009.00798.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19925634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jost, Günter</creatorcontrib><creatorcontrib>Martens-Habbena, Willm</creatorcontrib><creatorcontrib>Pollehne, Falk</creatorcontrib><creatorcontrib>Schnetger, Bernhard</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><title>Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>Oxic-anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO₂) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic-anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO₂ fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO₂ assimilation, totaling 9.3 mmol C m⁻² day⁻¹, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L⁻¹ day⁻¹ were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.</description><subject>Aerobic microorganisms</subject><subject>Anaerobic microorganisms</subject><subject>Anaerobiosis</subject><subject>anoxic sulfur oxidation</subject><subject>Assimilation</subject><subject>Autotrophic microorganisms</subject><subject>Autotrophs</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon dioxide fixation</subject><subject>Carbon sequestration</subject><subject>Chemoautotrophy</subject><subject>Chemocline</subject><subject>chemolithotrophic bacteria</subject><subject>CO2 fixation</subject><subject>CO₂ fixation</subject><subject>Detection limits</subject><subject>Ecology</subject><subject>Epsilonproteobacteria - metabolism</subject><subject>Gammaproteobacteria - metabolism</subject><subject>Geographical distribution</subject><subject>Harbors</subject><subject>Interfaces</subject><subject>Manganese</subject><subject>manganese oxide</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nitrates</subject><subject>Nitrates - analysis</subject><subject>Nitrites - analysis</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Oxygen</subject><subject>Oxygen - analysis</subject><subject>pelagic chemocline</subject><subject>Redox potential</subject><subject>Seawater - chemistry</subject><subject>Seawater - microbiology</subject><subject>sulfide recycling</subject><subject>Sulfides</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><subject>Sulfur oxidation</subject><subject>Water depth</subject><subject>Water Microbiology</subject><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc1u1DAUhSMEokPhFcASCzZk8H9iiU2p2lKpiEXp2nKSm45HiT3YjjrzNjwqzswIpAoE3lxL9zvnXvsUBSJ4SfL5sF4SUfFSKk6WFGO1xLhS9XL7pFj8ajwtFpjIupRcyZPiRYxrjIlgHD8vTohSVEjGF8WPM2cg-Ma2KE5DPwXkt7YzyXqHrENpBcg0EVwLyPfI2RRMAtT50bp8iWi07aw2A2pXMHozJZ-C36x2qAEHJq32FhsYzH0esWfawbq929wBExMEh658Gozr0CcTrXufy5AyfwvmZfGsN0OEV8d6WtxdXnw7_1zefL26Pj-7KVvBRV02xFRdI1nXiFb2QtWSclBcNrxRvaQ0t5kA6OoOV7RqaEsp5bKuuWihp1yw0-LdwXcT_PcJYtKjjS0MeSvwU9QKU8YEJ_8mK8Y4U3WtMvn2Ebn2U3D5GZoyLAWrOKkzVR-o_JMxBuj1JtjRhJ0mWM9x67WeU9VzqnqOW-_j1tssfX0cMDUjdL-Fx3wz8PEAPNgBdv9trC8vvuRLlrOD3E-bv4jLP2315qDqjdfmPtio724pJgyTinLCKPsJn8LSSA</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Jost, Günter</creator><creator>Martens-Habbena, Willm</creator><creator>Pollehne, Falk</creator><creator>Schnetger, Bernhard</creator><creator>Labrenz, Matthias</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>7TV</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>201002</creationdate><title>Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea</title><author>Jost, Günter ; Martens-Habbena, Willm ; Pollehne, Falk ; Schnetger, Bernhard ; Labrenz, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5458-b1a7db63db5c6f598624e946b4b9f6221a735eed8d0727b2c222468845cef2453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerobic microorganisms</topic><topic>Anaerobic microorganisms</topic><topic>Anaerobiosis</topic><topic>anoxic sulfur oxidation</topic><topic>Assimilation</topic><topic>Autotrophic microorganisms</topic><topic>Autotrophs</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon dioxide fixation</topic><topic>Carbon sequestration</topic><topic>Chemoautotrophy</topic><topic>Chemocline</topic><topic>chemolithotrophic bacteria</topic><topic>CO2 fixation</topic><topic>CO₂ fixation</topic><topic>Detection limits</topic><topic>Ecology</topic><topic>Epsilonproteobacteria - metabolism</topic><topic>Gammaproteobacteria - metabolism</topic><topic>Geographical distribution</topic><topic>Harbors</topic><topic>Interfaces</topic><topic>Manganese</topic><topic>manganese oxide</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nitrates</topic><topic>Nitrates - analysis</topic><topic>Nitrites - analysis</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Oxygen</topic><topic>Oxygen - analysis</topic><topic>pelagic chemocline</topic><topic>Redox potential</topic><topic>Seawater - chemistry</topic><topic>Seawater - microbiology</topic><topic>sulfide recycling</topic><topic>Sulfides</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><topic>Sulfur oxidation</topic><topic>Water depth</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jost, Günter</creatorcontrib><creatorcontrib>Martens-Habbena, Willm</creatorcontrib><creatorcontrib>Pollehne, Falk</creatorcontrib><creatorcontrib>Schnetger, Bernhard</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jost, Günter</au><au>Martens-Habbena, Willm</au><au>Pollehne, Falk</au><au>Schnetger, Bernhard</au><au>Labrenz, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2010-02</date><risdate>2010</risdate><volume>71</volume><issue>2</issue><spage>226</spage><epage>236</epage><pages>226-236</pages><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>Oxic-anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO₂) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic-anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO₂ fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO₂ assimilation, totaling 9.3 mmol C m⁻² day⁻¹, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L⁻¹ day⁻¹ were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19925634</pmid><doi>10.1111/j.1574-6941.2009.00798.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-6496
ispartof FEMS microbiology ecology, 2010-02, Vol.71 (2), p.226-236
issn 0168-6496
1574-6941
language eng
recordid cdi_proquest_miscellaneous_902335415
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Aerobic microorganisms
Anaerobic microorganisms
Anaerobiosis
anoxic sulfur oxidation
Assimilation
Autotrophic microorganisms
Autotrophs
Biomass
Carbon dioxide
Carbon Dioxide - metabolism
Carbon dioxide fixation
Carbon sequestration
Chemoautotrophy
Chemocline
chemolithotrophic bacteria
CO2 fixation
CO₂ fixation
Detection limits
Ecology
Epsilonproteobacteria - metabolism
Gammaproteobacteria - metabolism
Geographical distribution
Harbors
Interfaces
Manganese
manganese oxide
Microbiology
Microorganisms
Nitrates
Nitrates - analysis
Nitrites - analysis
Organic chemistry
Oxidation
Oxidation-Reduction
Oxidizing agents
Oxygen
Oxygen - analysis
pelagic chemocline
Redox potential
Seawater - chemistry
Seawater - microbiology
sulfide recycling
Sulfides
Sulfur
Sulfur - metabolism
Sulfur oxidation
Water depth
Water Microbiology
title Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anaerobic%20sulfur%20oxidation%20in%20the%20absence%20of%20nitrate%20dominates%20microbial%20chemoautotrophy%20beneath%20the%20pelagic%20chemocline%20of%20the%20eastern%20Gotland%20Basin,%20Baltic%20Sea&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Jost,%20G%C3%BCnter&rft.date=2010-02&rft.volume=71&rft.issue=2&rft.spage=226&rft.epage=236&rft.pages=226-236&rft.issn=0168-6496&rft.eissn=1574-6941&rft_id=info:doi/10.1111/j.1574-6941.2009.00798.x&rft_dat=%3Cproquest_cross%3E733439889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306537418&rft_id=info:pmid/19925634&rft_oup_id=10.1111/j.1574-6941.2009.00798.x&rfr_iscdi=true