Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea
Oxic-anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO₂) assimilation rates and active autotrophic microorganisms have challe...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology ecology 2010-02, Vol.71 (2), p.226-236 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 2 |
container_start_page | 226 |
container_title | FEMS microbiology ecology |
container_volume | 71 |
creator | Jost, Günter Martens-Habbena, Willm Pollehne, Falk Schnetger, Bernhard Labrenz, Matthias |
description | Oxic-anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO₂) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic-anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO₂ fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO₂ assimilation, totaling 9.3 mmol C m⁻² day⁻¹, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L⁻¹ day⁻¹ were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed. |
doi_str_mv | 10.1111/j.1574-6941.2009.00798.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902335415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-6941.2009.00798.x</oup_id><sourcerecordid>733439889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5458-b1a7db63db5c6f598624e946b4b9f6221a735eed8d0727b2c222468845cef2453</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEokPhFcASCzZk8H9iiU2p2lKpiEXp2nKSm45HiT3YjjrzNjwqzswIpAoE3lxL9zvnXvsUBSJ4SfL5sF4SUfFSKk6WFGO1xLhS9XL7pFj8ajwtFpjIupRcyZPiRYxrjIlgHD8vTohSVEjGF8WPM2cg-Ma2KE5DPwXkt7YzyXqHrENpBcg0EVwLyPfI2RRMAtT50bp8iWi07aw2A2pXMHozJZ-C36x2qAEHJq32FhsYzH0esWfawbq929wBExMEh658Gozr0CcTrXufy5AyfwvmZfGsN0OEV8d6WtxdXnw7_1zefL26Pj-7KVvBRV02xFRdI1nXiFb2QtWSclBcNrxRvaQ0t5kA6OoOV7RqaEsp5bKuuWihp1yw0-LdwXcT_PcJYtKjjS0MeSvwU9QKU8YEJ_8mK8Y4U3WtMvn2Ebn2U3D5GZoyLAWrOKkzVR-o_JMxBuj1JtjRhJ0mWM9x67WeU9VzqnqOW-_j1tssfX0cMDUjdL-Fx3wz8PEAPNgBdv9trC8vvuRLlrOD3E-bv4jLP2315qDqjdfmPtio724pJgyTinLCKPsJn8LSSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306537418</pqid></control><display><type>article</type><title>Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Jost, Günter ; Martens-Habbena, Willm ; Pollehne, Falk ; Schnetger, Bernhard ; Labrenz, Matthias</creator><creatorcontrib>Jost, Günter ; Martens-Habbena, Willm ; Pollehne, Falk ; Schnetger, Bernhard ; Labrenz, Matthias</creatorcontrib><description>Oxic-anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO₂) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic-anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO₂ fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO₂ assimilation, totaling 9.3 mmol C m⁻² day⁻¹, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L⁻¹ day⁻¹ were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.</description><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1111/j.1574-6941.2009.00798.x</identifier><identifier>PMID: 19925634</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Aerobic microorganisms ; Anaerobic microorganisms ; Anaerobiosis ; anoxic sulfur oxidation ; Assimilation ; Autotrophic microorganisms ; Autotrophs ; Biomass ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon dioxide fixation ; Carbon sequestration ; Chemoautotrophy ; Chemocline ; chemolithotrophic bacteria ; CO2 fixation ; CO₂ fixation ; Detection limits ; Ecology ; Epsilonproteobacteria - metabolism ; Gammaproteobacteria - metabolism ; Geographical distribution ; Harbors ; Interfaces ; Manganese ; manganese oxide ; Microbiology ; Microorganisms ; Nitrates ; Nitrates - analysis ; Nitrites - analysis ; Organic chemistry ; Oxidation ; Oxidation-Reduction ; Oxidizing agents ; Oxygen ; Oxygen - analysis ; pelagic chemocline ; Redox potential ; Seawater - chemistry ; Seawater - microbiology ; sulfide recycling ; Sulfides ; Sulfur ; Sulfur - metabolism ; Sulfur oxidation ; Water depth ; Water Microbiology</subject><ispartof>FEMS microbiology ecology, 2010-02, Vol.71 (2), p.226-236</ispartof><rights>2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved 2009</rights><rights>2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5458-b1a7db63db5c6f598624e946b4b9f6221a735eed8d0727b2c222468845cef2453</citedby><cites>FETCH-LOGICAL-c5458-b1a7db63db5c6f598624e946b4b9f6221a735eed8d0727b2c222468845cef2453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1574-6941.2009.00798.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1574-6941.2009.00798.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19925634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jost, Günter</creatorcontrib><creatorcontrib>Martens-Habbena, Willm</creatorcontrib><creatorcontrib>Pollehne, Falk</creatorcontrib><creatorcontrib>Schnetger, Bernhard</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><title>Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>Oxic-anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO₂) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic-anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO₂ fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO₂ assimilation, totaling 9.3 mmol C m⁻² day⁻¹, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L⁻¹ day⁻¹ were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.</description><subject>Aerobic microorganisms</subject><subject>Anaerobic microorganisms</subject><subject>Anaerobiosis</subject><subject>anoxic sulfur oxidation</subject><subject>Assimilation</subject><subject>Autotrophic microorganisms</subject><subject>Autotrophs</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon dioxide fixation</subject><subject>Carbon sequestration</subject><subject>Chemoautotrophy</subject><subject>Chemocline</subject><subject>chemolithotrophic bacteria</subject><subject>CO2 fixation</subject><subject>CO₂ fixation</subject><subject>Detection limits</subject><subject>Ecology</subject><subject>Epsilonproteobacteria - metabolism</subject><subject>Gammaproteobacteria - metabolism</subject><subject>Geographical distribution</subject><subject>Harbors</subject><subject>Interfaces</subject><subject>Manganese</subject><subject>manganese oxide</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nitrates</subject><subject>Nitrates - analysis</subject><subject>Nitrites - analysis</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Oxygen</subject><subject>Oxygen - analysis</subject><subject>pelagic chemocline</subject><subject>Redox potential</subject><subject>Seawater - chemistry</subject><subject>Seawater - microbiology</subject><subject>sulfide recycling</subject><subject>Sulfides</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><subject>Sulfur oxidation</subject><subject>Water depth</subject><subject>Water Microbiology</subject><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc1u1DAUhSMEokPhFcASCzZk8H9iiU2p2lKpiEXp2nKSm45HiT3YjjrzNjwqzswIpAoE3lxL9zvnXvsUBSJ4SfL5sF4SUfFSKk6WFGO1xLhS9XL7pFj8ajwtFpjIupRcyZPiRYxrjIlgHD8vTohSVEjGF8WPM2cg-Ma2KE5DPwXkt7YzyXqHrENpBcg0EVwLyPfI2RRMAtT50bp8iWi07aw2A2pXMHozJZ-C36x2qAEHJq32FhsYzH0esWfawbq929wBExMEh658Gozr0CcTrXufy5AyfwvmZfGsN0OEV8d6WtxdXnw7_1zefL26Pj-7KVvBRV02xFRdI1nXiFb2QtWSclBcNrxRvaQ0t5kA6OoOV7RqaEsp5bKuuWihp1yw0-LdwXcT_PcJYtKjjS0MeSvwU9QKU8YEJ_8mK8Y4U3WtMvn2Ebn2U3D5GZoyLAWrOKkzVR-o_JMxBuj1JtjRhJ0mWM9x67WeU9VzqnqOW-_j1tssfX0cMDUjdL-Fx3wz8PEAPNgBdv9trC8vvuRLlrOD3E-bv4jLP2315qDqjdfmPtio724pJgyTinLCKPsJn8LSSA</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Jost, Günter</creator><creator>Martens-Habbena, Willm</creator><creator>Pollehne, Falk</creator><creator>Schnetger, Bernhard</creator><creator>Labrenz, Matthias</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>7TV</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>201002</creationdate><title>Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea</title><author>Jost, Günter ; Martens-Habbena, Willm ; Pollehne, Falk ; Schnetger, Bernhard ; Labrenz, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5458-b1a7db63db5c6f598624e946b4b9f6221a735eed8d0727b2c222468845cef2453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerobic microorganisms</topic><topic>Anaerobic microorganisms</topic><topic>Anaerobiosis</topic><topic>anoxic sulfur oxidation</topic><topic>Assimilation</topic><topic>Autotrophic microorganisms</topic><topic>Autotrophs</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon dioxide fixation</topic><topic>Carbon sequestration</topic><topic>Chemoautotrophy</topic><topic>Chemocline</topic><topic>chemolithotrophic bacteria</topic><topic>CO2 fixation</topic><topic>CO₂ fixation</topic><topic>Detection limits</topic><topic>Ecology</topic><topic>Epsilonproteobacteria - metabolism</topic><topic>Gammaproteobacteria - metabolism</topic><topic>Geographical distribution</topic><topic>Harbors</topic><topic>Interfaces</topic><topic>Manganese</topic><topic>manganese oxide</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nitrates</topic><topic>Nitrates - analysis</topic><topic>Nitrites - analysis</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Oxygen</topic><topic>Oxygen - analysis</topic><topic>pelagic chemocline</topic><topic>Redox potential</topic><topic>Seawater - chemistry</topic><topic>Seawater - microbiology</topic><topic>sulfide recycling</topic><topic>Sulfides</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><topic>Sulfur oxidation</topic><topic>Water depth</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jost, Günter</creatorcontrib><creatorcontrib>Martens-Habbena, Willm</creatorcontrib><creatorcontrib>Pollehne, Falk</creatorcontrib><creatorcontrib>Schnetger, Bernhard</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jost, Günter</au><au>Martens-Habbena, Willm</au><au>Pollehne, Falk</au><au>Schnetger, Bernhard</au><au>Labrenz, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2010-02</date><risdate>2010</risdate><volume>71</volume><issue>2</issue><spage>226</spage><epage>236</epage><pages>226-236</pages><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>Oxic-anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO₂) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic-anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO₂ fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO₂ assimilation, totaling 9.3 mmol C m⁻² day⁻¹, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L⁻¹ day⁻¹ were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19925634</pmid><doi>10.1111/j.1574-6941.2009.00798.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-6496 |
ispartof | FEMS microbiology ecology, 2010-02, Vol.71 (2), p.226-236 |
issn | 0168-6496 1574-6941 |
language | eng |
recordid | cdi_proquest_miscellaneous_902335415 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Aerobic microorganisms Anaerobic microorganisms Anaerobiosis anoxic sulfur oxidation Assimilation Autotrophic microorganisms Autotrophs Biomass Carbon dioxide Carbon Dioxide - metabolism Carbon dioxide fixation Carbon sequestration Chemoautotrophy Chemocline chemolithotrophic bacteria CO2 fixation CO₂ fixation Detection limits Ecology Epsilonproteobacteria - metabolism Gammaproteobacteria - metabolism Geographical distribution Harbors Interfaces Manganese manganese oxide Microbiology Microorganisms Nitrates Nitrates - analysis Nitrites - analysis Organic chemistry Oxidation Oxidation-Reduction Oxidizing agents Oxygen Oxygen - analysis pelagic chemocline Redox potential Seawater - chemistry Seawater - microbiology sulfide recycling Sulfides Sulfur Sulfur - metabolism Sulfur oxidation Water depth Water Microbiology |
title | Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anaerobic%20sulfur%20oxidation%20in%20the%20absence%20of%20nitrate%20dominates%20microbial%20chemoautotrophy%20beneath%20the%20pelagic%20chemocline%20of%20the%20eastern%20Gotland%20Basin,%20Baltic%20Sea&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Jost,%20G%C3%BCnter&rft.date=2010-02&rft.volume=71&rft.issue=2&rft.spage=226&rft.epage=236&rft.pages=226-236&rft.issn=0168-6496&rft.eissn=1574-6941&rft_id=info:doi/10.1111/j.1574-6941.2009.00798.x&rft_dat=%3Cproquest_cross%3E733439889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306537418&rft_id=info:pmid/19925634&rft_oup_id=10.1111/j.1574-6941.2009.00798.x&rfr_iscdi=true |