Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis

Planetary boundary layer (PBL) processes control energy, water, and pollutant exchanges between the surface and free atmosphere. However, there is no observation‐based global PBL climatology for evaluation of climate, weather, and air quality models or for characterizing PBL variability on large spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2010-08, Vol.115 (D16), p.n/a
Hauptverfasser: Seidel, Dian J., Ao, Chi O., Li, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D16
container_start_page
container_title Journal of Geophysical Research: Atmospheres
container_volume 115
creator Seidel, Dian J.
Ao, Chi O.
Li, Kun
description Planetary boundary layer (PBL) processes control energy, water, and pollutant exchanges between the surface and free atmosphere. However, there is no observation‐based global PBL climatology for evaluation of climate, weather, and air quality models or for characterizing PBL variability on large space and time scales. As groundwork for such a climatology, we compute PBL height by seven methods, using temperature, potential temperature, virtual potential temperature, relative humidity, specific humidity, and refractivity profiles from a 10 year, 505‐station radiosonde data set. Six methods are directly compared; they generally yield PBL height estimates that differ by several hundred meters. Relative humidity and potential temperature gradient methods consistently give higher PBL heights, whereas the parcel (or mixing height) method yields significantly lower heights that show larger and more consistent diurnal and seasonal variations (with lower nighttime and wintertime PBLs). Seasonal and diurnal patterns are sometimes associated with local climatological phenomena, such as nighttime radiation inversions, the trade inversion, and tropical convection and associated cloudiness. Surface‐based temperature inversions are a distinct type of PBL that is more common at night and in the morning than during midday and afternoon, in polar regions than in the tropics, and in winter than other seasons. PBL height estimates are sensitive to the vertical resolution of radiosonde data; standard sounding data yield higher PBL heights than high‐resolution data. Several sources of both parametric and structural uncertainty in climatological PBL height values are estimated statistically; each can introduce uncertainties of a few 100 m.
doi_str_mv 10.1029/2009JD013680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902335231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312227821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5156-18adedf5b88fe85e3f3d372af1492aa597e76fdfd1d25f0b0006d0663251ef113</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoMouKy98wcEQbxx2nxMMjPeybZdW5YKxQ_wJmQnyW7qzGTNyVjnF_i3zbCliBeGQE7Ic17ynhehl5ScUsKaM0ZIc31OKJc1eYIWjApZMEbYU7QgtKwLwlj1HJ0A3JG8SiFLQhfo9wUk3-vkhx1uu7kKXdj5Vnf40OnBJh0nvA3jYOai05ONeG_9bp8Auxh6HLXxAcJgLA5bsPFn1goDvMOr0B909PkJB4d7m_bBANaDwePQ2pi0H9KU77qbwMML9MzpDuzJw7lEny8vPq0-FJuP66vV-03RitkQrbWxxoltXTtbC8sdN7xi2tGyYVqLprKVdMYZaphwZJudSkOk5ExQ6yjlS_TmqHuI4cdoIaneQ2u72WsYQTWEcS4Yn8lX_5B3YYz5u6BqSVhJBK8y9PYItTEAROvUIeYhxklRouZY1N-xZPz1g6aGPGIX9dB6eOxhnMmczCzLj9y97-z0X011vb49p5LnvUTFsctDsr8eu3T8rmTFK6G-3qxVdfmluhGbb-qW_wF8da0e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860240537</pqid></control><display><type>article</type><title>Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis</title><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Seidel, Dian J. ; Ao, Chi O. ; Li, Kun</creator><creatorcontrib>Seidel, Dian J. ; Ao, Chi O. ; Li, Kun</creatorcontrib><description>Planetary boundary layer (PBL) processes control energy, water, and pollutant exchanges between the surface and free atmosphere. However, there is no observation‐based global PBL climatology for evaluation of climate, weather, and air quality models or for characterizing PBL variability on large space and time scales. As groundwork for such a climatology, we compute PBL height by seven methods, using temperature, potential temperature, virtual potential temperature, relative humidity, specific humidity, and refractivity profiles from a 10 year, 505‐station radiosonde data set. Six methods are directly compared; they generally yield PBL height estimates that differ by several hundred meters. Relative humidity and potential temperature gradient methods consistently give higher PBL heights, whereas the parcel (or mixing height) method yields significantly lower heights that show larger and more consistent diurnal and seasonal variations (with lower nighttime and wintertime PBLs). Seasonal and diurnal patterns are sometimes associated with local climatological phenomena, such as nighttime radiation inversions, the trade inversion, and tropical convection and associated cloudiness. Surface‐based temperature inversions are a distinct type of PBL that is more common at night and in the morning than during midday and afternoon, in polar regions than in the tropics, and in winter than other seasons. PBL height estimates are sensitive to the vertical resolution of radiosonde data; standard sounding data yield higher PBL heights than high‐resolution data. Several sources of both parametric and structural uncertainty in climatological PBL height values are estimated statistically; each can introduce uncertainties of a few 100 m.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2009JD013680</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Air quality ; Atmospheric boundary layer ; Atmospheric sciences ; Boundary layers ; Climatology ; Density ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; mixing height ; planetary boundary layer height ; Polar environments ; Pressure ; radiosonde ; Refractivity ; Relative humidity ; Seasonal variations ; Specific humidity ; Surface temperature ; Temperature ; Temperature gradients ; Temperature inversions ; Tropical environments ; Water pollution ; Winter</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2010-08, Vol.115 (D16), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5156-18adedf5b88fe85e3f3d372af1492aa597e76fdfd1d25f0b0006d0663251ef113</citedby><cites>FETCH-LOGICAL-c5156-18adedf5b88fe85e3f3d372af1492aa597e76fdfd1d25f0b0006d0663251ef113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JD013680$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JD013680$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23260457$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seidel, Dian J.</creatorcontrib><creatorcontrib>Ao, Chi O.</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><title>Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>Planetary boundary layer (PBL) processes control energy, water, and pollutant exchanges between the surface and free atmosphere. However, there is no observation‐based global PBL climatology for evaluation of climate, weather, and air quality models or for characterizing PBL variability on large space and time scales. As groundwork for such a climatology, we compute PBL height by seven methods, using temperature, potential temperature, virtual potential temperature, relative humidity, specific humidity, and refractivity profiles from a 10 year, 505‐station radiosonde data set. Six methods are directly compared; they generally yield PBL height estimates that differ by several hundred meters. Relative humidity and potential temperature gradient methods consistently give higher PBL heights, whereas the parcel (or mixing height) method yields significantly lower heights that show larger and more consistent diurnal and seasonal variations (with lower nighttime and wintertime PBLs). Seasonal and diurnal patterns are sometimes associated with local climatological phenomena, such as nighttime radiation inversions, the trade inversion, and tropical convection and associated cloudiness. Surface‐based temperature inversions are a distinct type of PBL that is more common at night and in the morning than during midday and afternoon, in polar regions than in the tropics, and in winter than other seasons. PBL height estimates are sensitive to the vertical resolution of radiosonde data; standard sounding data yield higher PBL heights than high‐resolution data. Several sources of both parametric and structural uncertainty in climatological PBL height values are estimated statistically; each can introduce uncertainties of a few 100 m.</description><subject>Air quality</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric sciences</subject><subject>Boundary layers</subject><subject>Climatology</subject><subject>Density</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>mixing height</subject><subject>planetary boundary layer height</subject><subject>Polar environments</subject><subject>Pressure</subject><subject>radiosonde</subject><subject>Refractivity</subject><subject>Relative humidity</subject><subject>Seasonal variations</subject><subject>Specific humidity</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Temperature inversions</subject><subject>Tropical environments</subject><subject>Water pollution</subject><subject>Winter</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV1rFDEUhoMouKy98wcEQbxx2nxMMjPeybZdW5YKxQ_wJmQnyW7qzGTNyVjnF_i3zbCliBeGQE7Ic17ynhehl5ScUsKaM0ZIc31OKJc1eYIWjApZMEbYU7QgtKwLwlj1HJ0A3JG8SiFLQhfo9wUk3-vkhx1uu7kKXdj5Vnf40OnBJh0nvA3jYOai05ONeG_9bp8Auxh6HLXxAcJgLA5bsPFn1goDvMOr0B909PkJB4d7m_bBANaDwePQ2pi0H9KU77qbwMML9MzpDuzJw7lEny8vPq0-FJuP66vV-03RitkQrbWxxoltXTtbC8sdN7xi2tGyYVqLprKVdMYZaphwZJudSkOk5ExQ6yjlS_TmqHuI4cdoIaneQ2u72WsYQTWEcS4Yn8lX_5B3YYz5u6BqSVhJBK8y9PYItTEAROvUIeYhxklRouZY1N-xZPz1g6aGPGIX9dB6eOxhnMmczCzLj9y97-z0X011vb49p5LnvUTFsctDsr8eu3T8rmTFK6G-3qxVdfmluhGbb-qW_wF8da0e</recordid><startdate>20100827</startdate><enddate>20100827</enddate><creator>Seidel, Dian J.</creator><creator>Ao, Chi O.</creator><creator>Li, Kun</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20100827</creationdate><title>Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis</title><author>Seidel, Dian J. ; Ao, Chi O. ; Li, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5156-18adedf5b88fe85e3f3d372af1492aa597e76fdfd1d25f0b0006d0663251ef113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Air quality</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric sciences</topic><topic>Boundary layers</topic><topic>Climatology</topic><topic>Density</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>mixing height</topic><topic>planetary boundary layer height</topic><topic>Polar environments</topic><topic>Pressure</topic><topic>radiosonde</topic><topic>Refractivity</topic><topic>Relative humidity</topic><topic>Seasonal variations</topic><topic>Specific humidity</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Temperature inversions</topic><topic>Tropical environments</topic><topic>Water pollution</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seidel, Dian J.</creatorcontrib><creatorcontrib>Ao, Chi O.</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seidel, Dian J.</au><au>Ao, Chi O.</au><au>Li, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-08-27</date><risdate>2010</risdate><volume>115</volume><issue>D16</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Planetary boundary layer (PBL) processes control energy, water, and pollutant exchanges between the surface and free atmosphere. However, there is no observation‐based global PBL climatology for evaluation of climate, weather, and air quality models or for characterizing PBL variability on large space and time scales. As groundwork for such a climatology, we compute PBL height by seven methods, using temperature, potential temperature, virtual potential temperature, relative humidity, specific humidity, and refractivity profiles from a 10 year, 505‐station radiosonde data set. Six methods are directly compared; they generally yield PBL height estimates that differ by several hundred meters. Relative humidity and potential temperature gradient methods consistently give higher PBL heights, whereas the parcel (or mixing height) method yields significantly lower heights that show larger and more consistent diurnal and seasonal variations (with lower nighttime and wintertime PBLs). Seasonal and diurnal patterns are sometimes associated with local climatological phenomena, such as nighttime radiation inversions, the trade inversion, and tropical convection and associated cloudiness. Surface‐based temperature inversions are a distinct type of PBL that is more common at night and in the morning than during midday and afternoon, in polar regions than in the tropics, and in winter than other seasons. PBL height estimates are sensitive to the vertical resolution of radiosonde data; standard sounding data yield higher PBL heights than high‐resolution data. Several sources of both parametric and structural uncertainty in climatological PBL height values are estimated statistically; each can introduce uncertainties of a few 100 m.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JD013680</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2010-08, Vol.115 (D16), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_proquest_miscellaneous_902335231
source Wiley Journals; Wiley Online Library Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Air quality
Atmospheric boundary layer
Atmospheric sciences
Boundary layers
Climatology
Density
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
mixing height
planetary boundary layer height
Polar environments
Pressure
radiosonde
Refractivity
Relative humidity
Seasonal variations
Specific humidity
Surface temperature
Temperature
Temperature gradients
Temperature inversions
Tropical environments
Water pollution
Winter
title Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20climatological%20planetary%20boundary%20layer%20heights%20from%20radiosonde%20observations:%20Comparison%20of%20methods%20and%20uncertainty%20analysis&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Seidel,%20Dian%20J.&rft.date=2010-08-27&rft.volume=115&rft.issue=D16&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JD013680&rft_dat=%3Cproquest_cross%3E2312227821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860240537&rft_id=info:pmid/&rfr_iscdi=true