A PARALLEL ROBIN—ROBIN DOMAIN DECOMPOSITION METHOD FOR THE STOKES—DARCY SYSTEM

We propose a new parallel Robin—Robin domain decomposition method for the coupled Stokes—Darcy system with Beavers—Joseph—Saffman—Jones interface boundary condition. In particular, we prove that, with an appropriate choice of parameters, the scheme converges geometrically independent of the mesh siz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2011-01, Vol.49 (3/4), p.1064-1084
Hauptverfasser: CHEN, WENBIN, GUNZBURGER, MAX, HUA, FEI, WANG, XIAOMING
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1084
container_issue 3/4
container_start_page 1064
container_title SIAM journal on numerical analysis
container_volume 49
creator CHEN, WENBIN
GUNZBURGER, MAX
HUA, FEI
WANG, XIAOMING
description We propose a new parallel Robin—Robin domain decomposition method for the coupled Stokes—Darcy system with Beavers—Joseph—Saffman—Jones interface boundary condition. In particular, we prove that, with an appropriate choice of parameters, the scheme converges geometrically independent of the mesh size.
doi_str_mv 10.1137/080740556
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_901720515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23074323</jstor_id><sourcerecordid>23074323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f746315cd1e1bf56e00a3a1fc52bf8ef58b58f0733a4b16641b079bb6cdd66ad3</originalsourceid><addsrcrecordid>eNpdkMFOwkAURSdGExFd-AEmjYkxLqrvdTrT6bJCEWJhSFsXrJpp6SQQoNiBhTs_wi_0SyxCMHF1c_POvXm5hFwjPCJS7wkEeC4wxk9IC8FntocenJIWAOU2uo5_Ti6MmUPjBdIWiQNrHMRBFIWRFcvnwej78-tXra4cBjsJO3I4lskgHciRNQzTvuxaPRlbaT-0klS-hkkT6QZxZ2IlkyQNh5fkTKuFKa8O2iZvvTDt9O1Ivgw6QWQXrosbW3sup8iKKZaYa8ZLAEUV6oI5uRalZiJnQoNHqXJz5NzFHDw_z3kxnXKuprRN7ve967p635Zmky1npigXC7Uqq63JfEDPAYasIW__kfNqW6-a5zIhALgvfGighz1U1JUxdamzdT1bqvojQ8h222bHbRv27lCoTKEWularYmaOAcflKMARDXez5-ZmU9V_d9oUUYfSH7xOe10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880069890</pqid></control><display><type>article</type><title>A PARALLEL ROBIN—ROBIN DOMAIN DECOMPOSITION METHOD FOR THE STOKES—DARCY SYSTEM</title><source>SIAM Journals Online</source><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>CHEN, WENBIN ; GUNZBURGER, MAX ; HUA, FEI ; WANG, XIAOMING</creator><creatorcontrib>CHEN, WENBIN ; GUNZBURGER, MAX ; HUA, FEI ; WANG, XIAOMING</creatorcontrib><description>We propose a new parallel Robin—Robin domain decomposition method for the coupled Stokes—Darcy system with Beavers—Joseph—Saffman—Jones interface boundary condition. In particular, we prove that, with an appropriate choice of parameters, the scheme converges geometrically independent of the mesh size.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/080740556</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Airy equation ; Algorithms ; Approximation ; Boundary conditions ; Convergence ; Decomposition methods ; Domain decomposition methods ; Error function ; Error rates ; Exact sciences and technology ; Finite element method ; Linear equations ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Perceptron convergence procedure ; Porous materials ; Sciences and techniques of general use ; Studies</subject><ispartof>SIAM journal on numerical analysis, 2011-01, Vol.49 (3/4), p.1064-1084</ispartof><rights>Copyright ©2011 Society for Industrial and Applied Mathematics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f746315cd1e1bf56e00a3a1fc52bf8ef58b58f0733a4b16641b079bb6cdd66ad3</citedby><cites>FETCH-LOGICAL-c441t-f746315cd1e1bf56e00a3a1fc52bf8ef58b58f0733a4b16641b079bb6cdd66ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23074323$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23074323$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24618028$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHEN, WENBIN</creatorcontrib><creatorcontrib>GUNZBURGER, MAX</creatorcontrib><creatorcontrib>HUA, FEI</creatorcontrib><creatorcontrib>WANG, XIAOMING</creatorcontrib><title>A PARALLEL ROBIN—ROBIN DOMAIN DECOMPOSITION METHOD FOR THE STOKES—DARCY SYSTEM</title><title>SIAM journal on numerical analysis</title><description>We propose a new parallel Robin—Robin domain decomposition method for the coupled Stokes—Darcy system with Beavers—Joseph—Saffman—Jones interface boundary condition. In particular, we prove that, with an appropriate choice of parameters, the scheme converges geometrically independent of the mesh size.</description><subject>Airy equation</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Decomposition methods</subject><subject>Domain decomposition methods</subject><subject>Error function</subject><subject>Error rates</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Perceptron convergence procedure</subject><subject>Porous materials</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkMFOwkAURSdGExFd-AEmjYkxLqrvdTrT6bJCEWJhSFsXrJpp6SQQoNiBhTs_wi_0SyxCMHF1c_POvXm5hFwjPCJS7wkEeC4wxk9IC8FntocenJIWAOU2uo5_Ti6MmUPjBdIWiQNrHMRBFIWRFcvnwej78-tXra4cBjsJO3I4lskgHciRNQzTvuxaPRlbaT-0klS-hkkT6QZxZ2IlkyQNh5fkTKuFKa8O2iZvvTDt9O1Ivgw6QWQXrosbW3sup8iKKZaYa8ZLAEUV6oI5uRalZiJnQoNHqXJz5NzFHDw_z3kxnXKuprRN7ve967p635Zmky1npigXC7Uqq63JfEDPAYasIW__kfNqW6-a5zIhALgvfGighz1U1JUxdamzdT1bqvojQ8h222bHbRv27lCoTKEWularYmaOAcflKMARDXez5-ZmU9V_d9oUUYfSH7xOe10</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>CHEN, WENBIN</creator><creator>GUNZBURGER, MAX</creator><creator>HUA, FEI</creator><creator>WANG, XIAOMING</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110101</creationdate><title>A PARALLEL ROBIN—ROBIN DOMAIN DECOMPOSITION METHOD FOR THE STOKES—DARCY SYSTEM</title><author>CHEN, WENBIN ; GUNZBURGER, MAX ; HUA, FEI ; WANG, XIAOMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f746315cd1e1bf56e00a3a1fc52bf8ef58b58f0733a4b16641b079bb6cdd66ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Airy equation</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Decomposition methods</topic><topic>Domain decomposition methods</topic><topic>Error function</topic><topic>Error rates</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Perceptron convergence procedure</topic><topic>Porous materials</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, WENBIN</creatorcontrib><creatorcontrib>GUNZBURGER, MAX</creatorcontrib><creatorcontrib>HUA, FEI</creatorcontrib><creatorcontrib>WANG, XIAOMING</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEN, WENBIN</au><au>GUNZBURGER, MAX</au><au>HUA, FEI</au><au>WANG, XIAOMING</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PARALLEL ROBIN—ROBIN DOMAIN DECOMPOSITION METHOD FOR THE STOKES—DARCY SYSTEM</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>49</volume><issue>3/4</issue><spage>1064</spage><epage>1084</epage><pages>1064-1084</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>We propose a new parallel Robin—Robin domain decomposition method for the coupled Stokes—Darcy system with Beavers—Joseph—Saffman—Jones interface boundary condition. In particular, we prove that, with an appropriate choice of parameters, the scheme converges geometrically independent of the mesh size.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/080740556</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2011-01, Vol.49 (3/4), p.1064-1084
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_901720515
source SIAM Journals Online; Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Airy equation
Algorithms
Approximation
Boundary conditions
Convergence
Decomposition methods
Domain decomposition methods
Error function
Error rates
Exact sciences and technology
Finite element method
Linear equations
Mathematical analysis
Mathematical models
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Perceptron convergence procedure
Porous materials
Sciences and techniques of general use
Studies
title A PARALLEL ROBIN—ROBIN DOMAIN DECOMPOSITION METHOD FOR THE STOKES—DARCY SYSTEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PARALLEL%20ROBIN%E2%80%94ROBIN%20DOMAIN%20DECOMPOSITION%20METHOD%20FOR%20THE%20STOKES%E2%80%94DARCY%20SYSTEM&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=CHEN,%20WENBIN&rft.date=2011-01-01&rft.volume=49&rft.issue=3/4&rft.spage=1064&rft.epage=1084&rft.pages=1064-1084&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/080740556&rft_dat=%3Cjstor_proqu%3E23074323%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880069890&rft_id=info:pmid/&rft_jstor_id=23074323&rfr_iscdi=true