Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser

Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of heat and fluid flow 2009-04, Vol.30 (2), p.266-275
1. Verfasser: Pinarbasi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 2
container_start_page 266
container_title The International journal of heat and fluid flow
container_volume 30
creator Pinarbasi, Ali
description Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.
doi_str_mv 10.1016/j.ijheatfluidflow.2008.12.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901718186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X08001719</els_id><sourcerecordid>901718186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-e150de552b5d1bd266743418ab1b911f4b717eb7a87748a0bd96ce950305758e3</originalsourceid><addsrcrecordid>eNqNkEtP3DAQgK0KJJbHf_AF9ZR0xhvHzqGHChVaCYkLSNwsxxmDV06ytRMQ_55Eizj0xGlGmm9eH2OXCCUC1j92Zdg9k518nEPn4_haCgBdoigB8BvboFZNIYTSR2wDWIlCCfV4wk5z3gFADZXasMf7ObVzpMER78nmOVFPw5R5GPj0TEuINPF9tAPx0XPL3VJNwc9PNnI39vtEOY-JvyxAXFLeBe_nTOmcHXsbM118xDP2cP37_upPcXt38_fq123hto2cCkIJHUkpWtlh24m6VtW2Qm1bbBtEX7UKFbXKaqUqbaHtmtpRI2ELUklN2zP2_TB3n8Z_M-XJ9CE7iuvF45xNA6hQo64X8ueBdGnMOZE3-xR6m94MglmFmp35T6hZhRoUZhG69F9-bLLZ2eiTHVzIn0MEVtgouXI3B46Wt18CJZNdWAV3IZGbTDeGL258B_hIltM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901718186</pqid></control><display><type>article</type><title>Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser</title><source>Elsevier ScienceDirect Journals</source><creator>Pinarbasi, Ali</creator><creatorcontrib>Pinarbasi, Ali</creatorcontrib><description>Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/j.ijheatfluidflow.2008.12.001</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied fluid mechanics ; Blades ; Compressor ; Diffuser flow ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Hydraulic and pneumatic machinery ; Instrumentation for fluid dynamics ; Physics ; Reynolds stress ; Shear layers ; Turbulence ; Turbulence measurements ; Turbulent flow ; Vaneless ; Wakes</subject><ispartof>The International journal of heat and fluid flow, 2009-04, Vol.30 (2), p.266-275</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-e150de552b5d1bd266743418ab1b911f4b717eb7a87748a0bd96ce950305758e3</citedby><cites>FETCH-LOGICAL-c395t-e150de552b5d1bd266743418ab1b911f4b717eb7a87748a0bd96ce950305758e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142727X08001719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21419751$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinarbasi, Ali</creatorcontrib><title>Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser</title><title>The International journal of heat and fluid flow</title><description>Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.</description><subject>Applied fluid mechanics</subject><subject>Blades</subject><subject>Compressor</subject><subject>Diffuser flow</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydraulic and pneumatic machinery</subject><subject>Instrumentation for fluid dynamics</subject><subject>Physics</subject><subject>Reynolds stress</subject><subject>Shear layers</subject><subject>Turbulence</subject><subject>Turbulence measurements</subject><subject>Turbulent flow</subject><subject>Vaneless</subject><subject>Wakes</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEtP3DAQgK0KJJbHf_AF9ZR0xhvHzqGHChVaCYkLSNwsxxmDV06ytRMQ_55Eizj0xGlGmm9eH2OXCCUC1j92Zdg9k518nEPn4_haCgBdoigB8BvboFZNIYTSR2wDWIlCCfV4wk5z3gFADZXasMf7ObVzpMER78nmOVFPw5R5GPj0TEuINPF9tAPx0XPL3VJNwc9PNnI39vtEOY-JvyxAXFLeBe_nTOmcHXsbM118xDP2cP37_upPcXt38_fq123hto2cCkIJHUkpWtlh24m6VtW2Qm1bbBtEX7UKFbXKaqUqbaHtmtpRI2ELUklN2zP2_TB3n8Z_M-XJ9CE7iuvF45xNA6hQo64X8ueBdGnMOZE3-xR6m94MglmFmp35T6hZhRoUZhG69F9-bLLZ2eiTHVzIn0MEVtgouXI3B46Wt18CJZNdWAV3IZGbTDeGL258B_hIltM</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Pinarbasi, Ali</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser</title><author>Pinarbasi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-e150de552b5d1bd266743418ab1b911f4b717eb7a87748a0bd96ce950305758e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied fluid mechanics</topic><topic>Blades</topic><topic>Compressor</topic><topic>Diffuser flow</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydraulic and pneumatic machinery</topic><topic>Instrumentation for fluid dynamics</topic><topic>Physics</topic><topic>Reynolds stress</topic><topic>Shear layers</topic><topic>Turbulence</topic><topic>Turbulence measurements</topic><topic>Turbulent flow</topic><topic>Vaneless</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinarbasi, Ali</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinarbasi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser</atitle><jtitle>The International journal of heat and fluid flow</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>30</volume><issue>2</issue><spage>266</spage><epage>275</epage><pages>266-275</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijheatfluidflow.2008.12.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-727X
ispartof The International journal of heat and fluid flow, 2009-04, Vol.30 (2), p.266-275
issn 0142-727X
1879-2278
language eng
recordid cdi_proquest_miscellaneous_901718186
source Elsevier ScienceDirect Journals
subjects Applied fluid mechanics
Blades
Compressor
Diffuser flow
Exact sciences and technology
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
Hydraulic and pneumatic machinery
Instrumentation for fluid dynamics
Physics
Reynolds stress
Shear layers
Turbulence
Turbulence measurements
Turbulent flow
Vaneless
Wakes
title Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20measurements%20in%20the%20inlet%20plane%20of%20a%20centrifugal%20compressor%20vaneless%20diffuser&rft.jtitle=The%20International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=Pinarbasi,%20Ali&rft.date=2009-04-01&rft.volume=30&rft.issue=2&rft.spage=266&rft.epage=275&rft.pages=266-275&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/j.ijheatfluidflow.2008.12.001&rft_dat=%3Cproquest_cross%3E901718186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901718186&rft_id=info:pmid/&rft_els_id=S0142727X08001719&rfr_iscdi=true