Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser
Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy wer...
Gespeichert in:
Veröffentlicht in: | The International journal of heat and fluid flow 2009-04, Vol.30 (2), p.266-275 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 2 |
container_start_page | 266 |
container_title | The International journal of heat and fluid flow |
container_volume | 30 |
creator | Pinarbasi, Ali |
description | Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers. |
doi_str_mv | 10.1016/j.ijheatfluidflow.2008.12.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901718186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X08001719</els_id><sourcerecordid>901718186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-e150de552b5d1bd266743418ab1b911f4b717eb7a87748a0bd96ce950305758e3</originalsourceid><addsrcrecordid>eNqNkEtP3DAQgK0KJJbHf_AF9ZR0xhvHzqGHChVaCYkLSNwsxxmDV06ytRMQ_55Eizj0xGlGmm9eH2OXCCUC1j92Zdg9k518nEPn4_haCgBdoigB8BvboFZNIYTSR2wDWIlCCfV4wk5z3gFADZXasMf7ObVzpMER78nmOVFPw5R5GPj0TEuINPF9tAPx0XPL3VJNwc9PNnI39vtEOY-JvyxAXFLeBe_nTOmcHXsbM118xDP2cP37_upPcXt38_fq123hto2cCkIJHUkpWtlh24m6VtW2Qm1bbBtEX7UKFbXKaqUqbaHtmtpRI2ELUklN2zP2_TB3n8Z_M-XJ9CE7iuvF45xNA6hQo64X8ueBdGnMOZE3-xR6m94MglmFmp35T6hZhRoUZhG69F9-bLLZ2eiTHVzIn0MEVtgouXI3B46Wt18CJZNdWAV3IZGbTDeGL258B_hIltM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901718186</pqid></control><display><type>article</type><title>Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser</title><source>Elsevier ScienceDirect Journals</source><creator>Pinarbasi, Ali</creator><creatorcontrib>Pinarbasi, Ali</creatorcontrib><description>Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/j.ijheatfluidflow.2008.12.001</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied fluid mechanics ; Blades ; Compressor ; Diffuser flow ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Hydraulic and pneumatic machinery ; Instrumentation for fluid dynamics ; Physics ; Reynolds stress ; Shear layers ; Turbulence ; Turbulence measurements ; Turbulent flow ; Vaneless ; Wakes</subject><ispartof>The International journal of heat and fluid flow, 2009-04, Vol.30 (2), p.266-275</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-e150de552b5d1bd266743418ab1b911f4b717eb7a87748a0bd96ce950305758e3</citedby><cites>FETCH-LOGICAL-c395t-e150de552b5d1bd266743418ab1b911f4b717eb7a87748a0bd96ce950305758e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142727X08001719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21419751$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinarbasi, Ali</creatorcontrib><title>Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser</title><title>The International journal of heat and fluid flow</title><description>Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.</description><subject>Applied fluid mechanics</subject><subject>Blades</subject><subject>Compressor</subject><subject>Diffuser flow</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydraulic and pneumatic machinery</subject><subject>Instrumentation for fluid dynamics</subject><subject>Physics</subject><subject>Reynolds stress</subject><subject>Shear layers</subject><subject>Turbulence</subject><subject>Turbulence measurements</subject><subject>Turbulent flow</subject><subject>Vaneless</subject><subject>Wakes</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEtP3DAQgK0KJJbHf_AF9ZR0xhvHzqGHChVaCYkLSNwsxxmDV06ytRMQ_55Eizj0xGlGmm9eH2OXCCUC1j92Zdg9k518nEPn4_haCgBdoigB8BvboFZNIYTSR2wDWIlCCfV4wk5z3gFADZXasMf7ObVzpMER78nmOVFPw5R5GPj0TEuINPF9tAPx0XPL3VJNwc9PNnI39vtEOY-JvyxAXFLeBe_nTOmcHXsbM118xDP2cP37_upPcXt38_fq123hto2cCkIJHUkpWtlh24m6VtW2Qm1bbBtEX7UKFbXKaqUqbaHtmtpRI2ELUklN2zP2_TB3n8Z_M-XJ9CE7iuvF45xNA6hQo64X8ueBdGnMOZE3-xR6m94MglmFmp35T6hZhRoUZhG69F9-bLLZ2eiTHVzIn0MEVtgouXI3B46Wt18CJZNdWAV3IZGbTDeGL258B_hIltM</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Pinarbasi, Ali</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser</title><author>Pinarbasi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-e150de552b5d1bd266743418ab1b911f4b717eb7a87748a0bd96ce950305758e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied fluid mechanics</topic><topic>Blades</topic><topic>Compressor</topic><topic>Diffuser flow</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydraulic and pneumatic machinery</topic><topic>Instrumentation for fluid dynamics</topic><topic>Physics</topic><topic>Reynolds stress</topic><topic>Shear layers</topic><topic>Turbulence</topic><topic>Turbulence measurements</topic><topic>Turbulent flow</topic><topic>Vaneless</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinarbasi, Ali</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinarbasi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser</atitle><jtitle>The International journal of heat and fluid flow</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>30</volume><issue>2</issue><spage>266</spage><epage>275</epage><pages>266-275</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijheatfluidflow.2008.12.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-727X |
ispartof | The International journal of heat and fluid flow, 2009-04, Vol.30 (2), p.266-275 |
issn | 0142-727X 1879-2278 |
language | eng |
recordid | cdi_proquest_miscellaneous_901718186 |
source | Elsevier ScienceDirect Journals |
subjects | Applied fluid mechanics Blades Compressor Diffuser flow Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) Hydraulic and pneumatic machinery Instrumentation for fluid dynamics Physics Reynolds stress Shear layers Turbulence Turbulence measurements Turbulent flow Vaneless Wakes |
title | Turbulence measurements in the inlet plane of a centrifugal compressor vaneless diffuser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20measurements%20in%20the%20inlet%20plane%20of%20a%20centrifugal%20compressor%20vaneless%20diffuser&rft.jtitle=The%20International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=Pinarbasi,%20Ali&rft.date=2009-04-01&rft.volume=30&rft.issue=2&rft.spage=266&rft.epage=275&rft.pages=266-275&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/j.ijheatfluidflow.2008.12.001&rft_dat=%3Cproquest_cross%3E901718186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901718186&rft_id=info:pmid/&rft_els_id=S0142727X08001719&rfr_iscdi=true |